
 

M

 

 
 

 

 

F

Modelin

S

FACULTY

ng and C

SUBMITT

O

MAST

P

 

  

BIRZEI

Y OF INFO

Contro

A

TED AS P

OF THE R

fo

TER OF S

Huss

   Dr. Y
Palestine 

H

Dr
Bir
Ra

Fe

82 

IT UNIVE

ORMATIO

l of an

Crane

A THESIS

PARTIAL

REQUIR

 

or the degr

 

CIETIFIC

By: 

sein M. Ah

  

Advisors

Yousef M
Polytechn
ebron,Pa

r. Hassan 
rzeit Univ
mallah,P

bruary,20

i 

 
ERSITY 

ON TECH

Elastic

S 

L FULIFI

REMENTS

ree  

C COMPU

hmad 

: 

M. Al-Sweit
nic Unive
lestine 

Shibly 
versity, 
alestine 

010 

HNOLOGY

c Ship-M

ILLMENT

S  

UTING 

ti 
ersity, 

Y 

Mounte

T 

 

ed 



 

ii 

 

 
 

Modeling and Control of an Elastic Ship-Mounted 

Crane 

 
 
 

By: 

Hussein M. Ahmad 

 
This Thesis was defended successfully on 24 February 2010   and  approved 
by: 
 
 
 
Committee Members Signature 
 
Prof.Dr. Karim Tahboob -----------------------------------------------

 
Dr. Ibrahiem Hamad 
 

-----------------------------------------------

 
Dr.Hasan Shibli -----------------------------------------------

 
Dr.Yousef Al-Sweity -----------------------------------------------

 
 
 
 
 
 
 
 
 



 

iii 

 

 
Dedication 
 
 
 
 
 
 
 
 

 
To  

 

my parents, 
 

and  
 

my wife 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

iv 

 

 
Acknowledgment 
 
I am heartily thankful to my supervisors Dr.Yousef Al- Sweity and Dr. Hassan Shibli 

for their supervision, suggestions and continuous encouragements in every stage of my 

work. This thesis would not have been possible without their guidance and support 

from the initial to the final level which enabled me to develop a complete 

understanding of the thesis subject.     

 

 I am also very thankful to all people how encourages me to complete this work 

especially Eng. Majdi Zaloum for his great effort in helping me in Matlab 

programming, and the staff of the mechanical engineering department in Palestine 

Polytechnic University.     

 

  
 
 

  February, 2010 
 

Hussein Ahmad 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

v 

 

 

Notation 
 
L1, L2 length of the elastic boom , length of the payload . 
l length of the upper cable and length of the payload cable 
β, δ angle of the boom with the horizontal and roll angle 
ρ the luff angle of the elastic boom. 
α  the slew angle of the elastic boom with respect to the vertical axis. 
wi, γi 

,  
elastic displacement and elastic rotation at node i in in-plane 
elastic displacement and elastic rotation at node i in out-of-plane 

xA, yA,zA the displacements of the ship due sea motion. 
 wind forces acting directly on the payload. 
,  the in-and-out-of-plane angles of the payload. 

T  tension in   L2 the hosting cable  
  actual and estimated wind force 
mp  mass of the payload. 
me, E, I mass density, elastic modulus, cross section moment of area of the elastic 

boom 
ζ local coordinate in the finite element 
M0, K0 mass and stiffness matrices 
B1, B2 input matrices 
B3, B4  disturbance matrices 
B5 wind force 

zzq ˆ,,  displacement vector, state vector, and estimated state vector 
u, y, ym input, output, and measurement vectors 
A, Ae system and extended system matrices 
B, Be input and extended input matrices 
E, Ee disturbance and extended disturbance matrices corresponding to rolling 
N disturbance matrix corresponding to the wind force acting on the payload
C, Ce output and extended output matrices 
D, F input and disturbance feed forward matrices. 
L1, L2, Le observer gain components and extended observer gain matrix  
λi ith eigenvalue 
e, J error vector and input matrix for the error equation of the observer 
Q, Qe weight matrix of the states and the estimated states for the optimal design  
R, Re weight matrix of the inputs and the measurements for the optimal design  
P solution of Ricatti equation 
u , Kf input vector and gain of the optimal controller 
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Abstract 
 
Modeling and control of 3D-elastic ship-mounted cranes with a circular cross section 

elastic boom had been developed. The developed model contains three kinematic 

inputs (the luff  and slew angles of the boom together with the length of the payload 

hosting cable) to control the elastic vibrations of the boom and the pendulation of the 

payload.  Two kinds of disturbances are considered; the sea waves which act on the 

ship and the wind force which act directly on the payload. The developed nonlinear 

model of the crane is expanded about the current operating point which varies with the 

luff and slew angles and the length of the payload cable using Taylor series. The result 

is a linear time-variant model for the crane under consideration.  

 

Simulation results for the linearized model show that the disturbances considered 

cause the payload to oscillate in the in-plane and in the out-of-plane . Consequently, 

the linear model is used to design the control system of the crane. The coefficient 

matrices of this linear model are calculated at the current (instantaneous) operating  

point, which varies with the luff and slew angles and the length of the payload cable, 

therefore, a variable-model problem is created and accordingly a variable-gain 

observer and a variable-gain controller are designed to cover the operation of the crane 

for all possible operating points in the working space of the crane.  

 

The switching between these gains takes place automatically according to the output of 

a region finder, which uses the measurements of the luff and slew angles and the 

length of the payload cable to detect the current operating region.  Extended-observer 

is used to estimate the states and unknown disturbances; this guarantees that the 

estimated states converge to their true values even though a nonzero disturbance force 

acts on the payload. The controller uses the estimated states and the measured 

pendulation distances of the elastic boom in both in-plane and out-of-plane, and the 

measured in-plane and out-of-plane pendulation angles of the payload cable to create 

the required damping and to reduce the effect of the disturbances on the ship. Stability 

and performance robustness of the system are ensured for the total working space and 



 

x 

 

also for the expected range of the payload mass. Simulation results show that the 

observer can estimate the states and the disturbances very well and the controller can 

reduce the payload pendulations significantly.  
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1  Introduction 
 
1.1  Motivation 
 

The crane can be considered as one of the most important tools used to transfer 
loads and cargo from one ship to another. As shown in Fig. 1.1 cranes have very strong 
structures in order to be able to lift heavy objects on their working space. 

When cargo ships can not dock directly at port, ship-mounted cranes are used to 
lift and transfer cargo from these large ships to lighter port-going vessels. During this 
process, any sea motions can result in wave induced crane pendulations making the 
operation of the ship-mounted cranes unsafe especially whenever the waves are 
sufficiently high to produce large displacements of the payload. 

At ports where such conditions (sea motions) exist for extended periods of time, 
this constraint on the flow of cargo shipping results in significant delays and cost 
overruns. Several control mechanisms have been proposed to suppress unsafe 
pendulations and enable the operation of ship-mounted cranes at high seas. 
 
 

 
 

Figure 1.1: Picture of a ship-mounted crane at sea[6]. 
 

 Boom cranes are modeled as spherical pendulum. It is found that when a 

lightly damped spherical pendulum is subjected to a simple harmonic planar 

displacement at the suspension point, nonplanar motions of the pendulum could be 
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excited due to the nonlinear interaction between in-plane and out-of-plane modes. Chin 

and Nayfeh (1996, 2001) [1] studied ship-mounted crane dynamics in two cases of 

harmonic base excitations at the boom tip: the case of primary resonance and the case 

of principal parametric resonance. They found out that, while the parametric excitation 

exhibits principal resonance in neighborhood of twice the natural frequency of the 

system, the response is always periodic and planar with arbitrary plane of oscillations. 

On the other hand, direct excitations produce complex dynamics when the excitation 

frequency approaches the natural frequency of the system (primary resonance). They 

also found out that a strictly planar excitation could produce in-plane and out-of-plane 

pendulations and that response may exhibit sudden jumps, modulation of the response 

amplitudes and phases and chaos. 

Yuan and Ott (1997)  [2] proposed a rigging to ship-mounted cranes, which is 

referred to as the “Maryland Rigging” system . A passive control effort is applied to 

the planar payload pendulations by applying a brake system to the upper cable as it 

passes over the pulley. They derived a planar model of this rigging and utilized it to 

investigate the response of the system to periodic and chaotic roll motions. Their 

simulation results showed that the payload response builds up significantly when the 

dominant frequency of the chaotic motion approaches the natural frequency of the 

lower pendulum. The pulley was then used as a brake to apply a constant and 

continuous dry friction. Simulation results showed that a constant friction force up to 

10% of the payload weight can reduce planar payload pendulations significantly even 

in the neighborhood of the natural frequency of the system. 

Kimiaghalam (1999) [3] proposed a fuzzy logic control approach to dampen the 

pendulations in a Maryland rigged crane by changing the length of the upper cable to 

eliminate and dampen payload pendulations; however, its performance is inferior to that of the 

passive controller. 

Dadone and Landingham (1999) [4] used a fuzzy logic interference engine to 

stabilize the in-plane motions of the payload by determining the level of dry friction in 

the pulley based on the positions and velocities of the pulley and payload. 

Simultaneously, the pulley velocity and acceleration are used to feedback changes in 

the pulley cable to eliminate vertical oscillations of the pulley. Simulation results 
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showed fast damping of the payload motions, however the friction level (control 

effort) in the pulley was much higher than that employed by Yuan (1997). Further, 

although changes in the length of the pulley cable absorbed the pulley vertical 

oscillations, they introduced horizontal oscillations in the positions of both the pulley 

and payload. 

Wen and Kimiaghalam (1999) proposed a combined feed forward and feedback 

control strategy to stabilize planar pendulations in crane equipped with the Maryland 

rigging. The governing planar equations of motion are linearized and the control 

strategy is based on changing the length of the upper cable to cancel the effects of the 

base excitation due to ship roll and to add more damping to the system. Simulation 

results showed that the controller can reduce the payload pendulations to less than 3º 

for small roll motions. 

x

y

),(

),(

)(
),(

),(

22

11

2

1

2

1

21

6

6

4

3

yx

yx

l

m

m

w

t
D

L

L

yx

yx

CC

AA

−

+

ψα

ψα

αα

θ

β

)(2 tL

)(1 tL

ψ

Payload 

Elast
ic p

art

  

Node 6

Node 1

Rigid part (BC)

Upper cable

Lower suspension 
 point

ρ
φ  

2

5L

Roll center

p
=    +∆δδδ 0

C

G

B
B'

A

2

0x

0x

0y

0x

δ∆

  
 

Figure 1.2:  Al-Sweiti crane configuration with Maryland Rigging [6]. 
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Kimiaghalam (2000) [5], proposed another control system to reduce the 

excursions of the equilibrium point of the pulley due to ship rolling by keeping the 

position of the pulley directed above the payload. Simulation results showed that the 

proposed control strategy is effective and fast in damping payload pendulations. 

However, the control system assume full authority over the lengths of both segments 

of the upper cable, and hence the pulley position. This assumption violates the pulley’s 

equilibrium equation.  

Al-Sweiti (2006) [6,7] considered the Maryland Rigging crane with elastic 

boom system as shown in Fig. 1.2. The boom luff angle, the length of the upper cable, 

and the position of its lower suspension point were employed as inputs to control the 

planar vibrations of the elastic boom and the planar pendulation of the payload.  

The disturbances acting on the crane are the rolling action of the ship  due to sea 

motions in addition to the wind force acting directly on the payload. The dynamic of 

the crane is described by a multi-model problem depending on the current values of the 

cable length and boom luff angle. 

Accordingly a variable-gain observer and a variable-gain controller were 

designed. The controller used the estimated states and the measured roll angle to create 

the required damping and to compensate for the rolling motion of the ship. Simulation 

and experimental results showed that the expressed control strategy performs very well 

and has a significant effect in suppressing the planar vibrations  by 95% for different 

operating conditions and payload masses. 

This work focuses on modeling and control of  three dimensional ship-mounted crane 

with an elastic boom (see Figure 1.3). The goal is to dampen the  planar and the   

nonplanar elastic vibrations of the boom and the in-plane and out-of-plane payload 

pendulations induced from sea wave motions causing the ship to roll and move in the 

3D dimension and the air forces  acting directly on the load due to the air  . 
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1.2  Organization of the thesis 
 
The thesis consists of four chapters; Chapter 1 is a literature reviews, Chapter 2 the 

development of the mathematical model of the elastic boom and payload, the nonlinear 

terms are separated using Taylor series expansion and the model is examined by 

simulations to investigate the effect of the disturbances on the overall response for 

different operating conditions. 

In Chapter 3, the state space representation of the crane is obtained. A variable-gain 

extended-Observer is designed to reconstruct the states and approximate the unknown 

disturbances during the cargo transfer process, and a variable gain state controller is 

designed to suppress the vibration. Chapter 4 summarizes the results and conclusions 

with some recommendations which may be useful for future studies.   
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2  Model development  
 

In this chapter we will develop the mathematical model of the 3D-elastic ship-mounted 

crane based on the configuration  shown in Fig. 1.3. The elastic boom is modeled using 

the finite element method. The dynamics of the payload is modeled using Lagrange 

equation of energy. Three inputs are assigned to control the  planar and  nonplanar 

vibrations of the elastic boom and payload due to excitations either from the sea wave 

motion in ,  and  directions or the wind forces acting directly on the payload, in 

the same directions as the wave motion.  

 
2.1 Assumptions 
 
In deriving the mathematical model of the 3D-crane, the following assumptions are 

considered: 

 The elastic  boom (AB) is divided into five finite elements from ( 1,2 … 5), thus 

six nodes are considered. 

 The cross section of the elastic boom is circular. 

 The mass of cable  is neglected and its length varies with time. 

 The elongation of the cables and the structural damping of the boom are neglected. 

 The slew angle ,  represents the rotation of the elastic boom  with respect to the 

 axis’s. 

 The angle β  represents the orientation of the boom axis with respect to the 

horizontal. It is equal to the sum of the roll angle ∆δ and the luff angle ρ  

∆ . 

 The disturbances acting on the crane are the rolling action of the ship    and ,  

and  displacement of the ship caused by the sea motion   in addition to the wind 

force P in the direction of ( , ,   acting directly on the payload; this force may 

appear due to a strong wind or a direct impact force which may happen by accident 

during the operation of the crane. 

  and  represent the in-plane and the out-of-plane motion of the payload 

respectively as shown in figure 2.1 and figure 2.2. 
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  ,     are considered the  control  inputs to suppress the  vibrations of 

the payload and the  elastic boom. 

 

x

(1)

(2)

(3)

(4)

(5)

A

y

x 0

y
0

,(

,,(

66

p

6

1

yx

m

w

L

yx AA

Payload
x0

ψ

β P

ρ

∆δδδ o

B

z0

2L

θ

zA)

Elastic   boom

, 6z )

α

x 0

z 0

2

6
v

x 2

2

= +

∆δ Rolling

z 2

 
 

Figure 2.1:  Modified crane configuration. 

2.2  Kinematics of the payload  
 

Assume that the position of the tip of the boom where the payload cable is attached is 

expressed by the coordinates , ,    as shown in Fig.2.2, therefore, the global 

position of the payload is expressed by the coordinates   , ,    such that: 

    cos sin   (2.1)
 cos cos     (2.2)
 sin   (2.3)

 

The velocity components of the payload can be expressed as: 
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cos sin sin sin cos cos  (2.4)
= cos cos  sin cos cos sin  (2.5)

sin cos  (2.6)
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Figure 2.2:  Payload configuration.   
 
2.3  Kinetics of the payload 
 
The generalized  forces  corresponding to the generalized  coordinates (θ, ,L2)   are 

shown in Fig. 2.3; They can be expressed as: 

 

  T cos  sin   (2.7)
   cos  cos   (2.8)
 –  sin   (2.9)

 

 
Where: 
            : represents the tension in the cable . 

 
           ( ,  ,  ) : the 3D-dimensional  component of wind force. 
 



 

9 

 

  The kinetic and the potential energies of the payload is given by  Eq.(2.10) and Eq. (2.11) 

respectively: 

 
KE 1 2⁄  

2 2 2
  (2.10)

 
 

U  g   (2.11)
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Figure 2.3:Tension and wind forces configuration. 
 
Thus the Lagrange equation can be expressed as  
 

KE  
    1 2⁄  

2 2 2 2  
(2.12)

 
 
 The equations of motion of the payload take the following form (see derivation in 
Appendix C):  

 

   
 

(2.13)
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   (2.14)

   (2.15)

 
Substituting equations (2.2, 4, 5, 6) into equation (2.12), and after the evaluation of 

equations(2.13, 14, 15)  then the nonlinear differential equations of  the payload 

motion can be expressed as follows: 

 
 sin sin sin cos cos 2

sin cos
sin cos

1⁄ sin sin
 sin cos cos  

(2.16)

 
  cos cos cos sin cos 2 cos

2 sin cos sin cos cos sin
cos cos sin

cos sin
1⁄  cos cos cos sin  

(2.17)

 
  cos sin cos cos sin

cos
cos cos

1⁄  cos sin cos cos sin θ  

(2.18)

 
  According to  equation 2.18  the tension   in the hosting cable can be expressed as  
follows: 

 
6 cos sin 6 cos cos 6sin 2

2
2

2

2
2 cos2 cos cos

 cos sin cos cos sin θ  

(2.19)

 
In order to find the position of the tip of the elastic boom  , ,   relative to the 

spherical joint  , , , , connecting the lower end of the boom to the 

ship, the axis transformation method is used, considering  that the boom AB rotates 

 around   axis  in  clockwise direction with angle  and a round  axis in counter 

clockwise with angle  shown in Fig. 2.4, thus the obtained vectors are as follows : 

 
 cos cos cos sin sin                     (2.20)
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 sin cos  
 

sin cos sin sin cos  
  

 
And the second derivative of  , ,  with respect to time are: 
 

 sin cos sin sin cos
cos sin cos cos

cos sin sin
β  2 sin sin 2   sin cos   

2 sin sin 2 cos cos
 2 cos

 cos sin sin cos cos
cos cos cos sin

(2.21)

 
 

cos sin cos β 2sin  
sin cos

(2.22)

 
 
 

α cos α cos β  cos α sin β  sin α
sin sin  sin cos   sin sin   

cos αβ 2 cos α sin β 2 cos cos    
 α 2 cos α sin β 2 sin cos  

2                                                                      
α  sin α cos β sin α sin β cos α

sin cos sin sin

(2.23)

 
2.4 Kinematics of the elastic boom   
            
In order to derive the equations of motion for the 3D-elastic boom (AB) using the finite 

element model shown in Fig. 2.4. First: we need to find the absolute lateral 

accelerations of the point  B  relative to point  A  which  has an acceleration  in the 

three dimension space denoted by  , , . 

 
From Fig. 2.4 it can be concluded that  point  B has two absolute lateral accelerations 

in the vertical plane  and in the out-of-plane   denoted by ,  respectively. 

Thus by utilizing the following equations : 
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Figure 2.4: Free body diagram of the elastic boom . 

 
 

   (2.24)
   (2.25)

 
We can derive the absolute lateral accelerations for any of the elements of the elastic 

boom (AB)  as: 

. cos  sin sin cos sin  (2.26)
  cos sin cos  (2.27)

 
Where ,  denotes the local deflection of the boom in   and  planes 

respectively . 

2.5  Dynamics of the elastic part of the boom 
 

For deriving the finite element model of the elastic part (AB), the effects of rotary 

inertia, transverse shear deformation, and the axial force are neglected. Accordingly, 

with reference to the single element shown in Fig. 2.5, the equation of motion in   

plane can be written as 
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dx2 x2 x2+dx2

 M w

V y2

 x2

 M w+dMw
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w
w+dw

me dx2 g cosß
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Figure 2.5: Geometry of a single boom element, all axial force 
components are neglected. 

 
 
 
 
 
and in  plane the equation  of motion  is 
 

 

0   (2.29)

 
where  denotes the mass per unit length of the boom and , represent the 

absolute lateral accelerations of the element located at  ,   

Substituting Eq. (2.26) into Eq. (2.28) and utilizing the relation 
 

  (2.30)

 

 
(2.28) 
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yield 

 ,  

 
(2.31)

 
where 
 

, cos sin cos
cos sin   (2.32)

 
represents the distributed lateral load acting on the part AB in     plane. 
 
Substituting Eq. (2.27) into Eq. (2.29) and utilizing the relation 
 
 

  

  (2.33)

 
yield 
 

 ,  

 
(2.34)

where 
, cos cos sin   (2.35)

 
represents the distributed lateral load acting on the part AB in   z   plane.  
 

The free body diagram of a single finite element of length l is shown in Fig. 2.6, the 

transverse displacement ζ   can be related to the node variables  ,  , ,                         

in   plane, and ζ  can be related to the node variables   ( ,  , ,  ) in  

  z   p lane ,  through four cubic interpolation functions, such that: 

 
 ζ  (2.36)
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l

 M wi

Fy2i

 x2

 y2

 Mw i+l )

wi wi+l

 p y2  x2 , t
Fy2 i l

 γi 1

γi

ζ 0   ζ l

l

 Mvi

Fz2i

 x2

 z2

 Mv i+l )

vi vi+l

 pz2 ( x2 , t)
Fz2 i l 

  φ  i+l )
  φ i

, ζ

  ζ 0 ζ   l

w( ζ)

v ( ζ)

 x2  x2 i  x2  x2 i l

 x2  x2 i  x2  x2 i l

, ζ

 
Figure 2.6: Single finite element. 

 
 
 
where 
 

 ,  ,  ,  (2.37)
 
is the node variables vector of order 4×1 in     plane, and 
 

 

1 3 ζ / 2 ζ /
ζ / 2 ζ / ζ 

2 ζ / 3 ζ /
ζ / ζ /

 (2.38)

 
is the cubic interpolation shape functions vector of order 4×1 [8] in     plane which 

is a typical method for the discritization of elastic continua.  
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In the same manner we can derive the shape functions of element i in z as  
fo l lows:  
 

 
 ζ  (2.39)

 
where 
 
 
 
is the node variables vector of order 4×1 in    plane, and 
 

 

1 3 ζ / 2 ζ /
ζ / 2 ζ / ζ 

2 ζ / 3 ζ /
ζ / ζ /

 (2.41)

 
is the cubic interpolation shape functions vector of order 4×1 [8] in     plane  

 
The element mass and stiffness matrices in    plane for element i are defined 

respectively as: 

 
 
 
  
 
 

 
 
 
 
 
  
 
 
 
 

 
 
where  denotes the second derivative of with respect to the local coordinate ζ  

.  

 ,  ,  ,  (2.40)

 ζ  (2.42)

             

156 22 54 13
22 4 13 3
54 13 156 22
13 3 22 4

 
(2.43)

  ζ  (2.44)

         

12 6 12 6
6 4 6 2
12 6 12 6

6 2 6 4

 
(2.45)
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In the same manner we can derive the mass and stiffness matrices of element i in 

     plane and they are as follows: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Therefore the local mass and stiffness matrices for the element i in both   and   

   planes can be expressed respectively as: 

 
          
 
                                   

 
 

 ζ  (2.46)

          

156 22 54 13
22 4 13 3
54 13 156 22
13 3 22 4

 
(2.47)

  ζ  (2.48)

          

12 6 12 6
6 4 6 2
12 6 12 6

6 2 6 4

 
(2.49)

                            
                                      

 

   420

156 0 22 0 54 0 13 0

0 156 0 22 0 54 0 13

22 0 4 0 13 0 3 0

0 22 0 4 0 13 0 3

54 0 13 0 156 0 22 0

0 54 0 13 0 156 0 22

13 0 3 0 22 0 4 0

0 13 0 3 0 22 0 4

 

 

 

 

 

 

(2
.5

0)
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Also, the element force vector in   plane (acting on the nodes  and 1 which 

are , , ,
 
can be also expressed as : 

 

, ζ  (2.52)

 
Since ,  varies linearly with the position  of the element, each element has a 

different force vector whose magnitude depends on the location of the element along 

the boom. Therefore, to calculate the integration in the right hand side of Eq. (2.52), 

equation (2.32) is rewritten as: 

 
, ζ  (2.53)

 
with 
 

cos sin cos cos sin  (2.54)
 

              
                                                     

  
 

 

  

12 0 6 0 12 0 6 0

0 12 0 6 0 12 0 6

6 0 4 0 6 0 2 0

0 6 0 4 0 6 0 2

12 0 6 0 12 0 6 0

0 12 0 6 0 12 0 6

6 0 2 0 6 0 4 0

0 6 0 2 0 6 0 4

 

 

 

 

 

(2
.5

1)
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where 0 ζ  is the local longitudinal axis of the element, and  locates the 

element under consideration with respect to point  as shown in Fig. 2.6. Inserting Eq. 

(2.53) into Eq. (2.52) and carrying out the integration yield: 

 

 

20 

10 10 3
5
3 3 5 2

10 10 7
5
3 3 5 3

 (2.55)

 
 
the element force vector in       plane (acting on the nodes  and 1 which are 

, , , can be also expressed as  
 

, ζ  (2.56)

where  
 

, cos ζ  (2.57)
with 
 

cos sin  (2.58)
 
After inserting Eq. (2.57) into Eq. (2.56) and evaluating the integration the force vector 

in    plane becomes:  

 

20 

10 10 cos 3
5
3 3 5 cos 2

10 10 cos 7
5
3 3 5 cos 3

 (2.59)

 
Therefore the total local force vector has a dimension 8x1 for the element i in both 

     and    planes is  as follows : 

 



 

20 

 

 

 20

10 10 3

10 10 cos 3
5
3 3 5 2

5
3 3 5 cos 2

10 10 7

10 10 cos 7
5
3 3 5 3

5
3 3 5 cos 3

 (2.60)

 
 
By dividing the boom into five elements (i = 1,…,5), the mass matrix, the symmetric 

stiffness matrix, and the nodal force vector for the complete boom  can be easily 

constructed by the assembling process [8] such that : 

 

 (2.61)

 

 (2.62)

 
(2.63)

 
 
where : 
 

, ,  represent the symmetric mass matrix, symmetric stiffness matrix and the nodal 

force vector respectively for the complete elastic boom . 

 
After utilizing the equations (2.61), (2.62) and (2.63) the following expression for the 

matrices were found :   
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420

156 0  22 0 54 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 156 0  22 0 54 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

22 0 4 0 13 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 22 0 4 0 13 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

54 0 13 0 312 0 0 0 54 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0
0 54 0 13 0 312 0 0 0 54 0 13 0 0 0 0 0 0 0 0 0 0 0 0
13 0 3 0 0 0 8 0 13 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0
0 13 0 3 0 0 0 8 0 13 0 3 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 54 0 13 0 312 0 0 0 54 0 13 0 0 0 0 0 0 0 0 0
0 0 0 0 0 54 0 13 0 312 0 0 0 54 0 13 0 0 0 0 0 0 0 0
0 0 0 0 13 0 3 0 0 0 8 0 13 0 3 0 0 0 0 0 0 0 0 0
0 0 0 0 0 13 0 3 0 0 0 8 0 13 0 3 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 54 0 13 0 312 0 0 0 54 0 13 0 0 0 0 0
0 0 0 0 0 0 0 0 0 54 0 13 0 312 0 0 0 54 0 13 0 0 0 0
0 0 0 0 0 0 0 0 13 0 3 0 0 0 8 0 13 0 3 0 0 0 0 0
0 0 0 0 0 0 0 0 0 13 0 3 0 0 0 8 0 13 0 3 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 54 0 13 0 312 0 0 0 54 0 13 0
0 0 0 0 0 0 0 0 0 0 0 0 0 54 0 13 0 312 0 0 0 54 0 13
0 0 0 0 0 0 0 0 0 0 0 0 13 0 3 0 0 0 8 0 13 0 3 0
0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 3 0 0 0 8 0 13 0 3
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 54 0 13 0 156 0 22 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 54 0 13 0 156 0 22
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 3 0 22 0 4 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 3 0 22 0 4

(2.64) 

 
 
 
  

12 0  6 0 12 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 12 0  6 0 12 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 4 0 6 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 6 0 4 0 6 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 6 0 24 0 0 0 12 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0
0 12 0 6 0 24 0 0 0 12 0 6 0 0 0 0 0 0 0 0 0 0 0 0
6 0 2 0 0 0 8 0 6 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0
0 6 0 2 0 0 0 8 0 6 0 2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 12 0 6 0 24 0 0 0 12 0  6 0 0 0 0 0 0 0 0 0
0 0 0 0 0 12 0 6 0 24 0 0 0 12 0  6 0 0 0 0 0 0 0 0
0 0 0 0 6 0 2 0 0 0 8 0 6 0 2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 6 0 2 0 0 0 8 0 6 0 2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 12 0 6 0 24 0 0 0 12 0  6 0 0 0 0 0
0 0 0 0 0 0 0 0 0 12 0 6 0 24 0 0 0 12 0  6 0 0 0 0
0 0 0 0 0 0 0 0  6 0 2 0 0 0 8 0 6 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0 0   6 0 2 0 0 0 8 0 6 0 2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 12 0  6 0 24 0 0 0 12 0 6 0
0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 6 0 24 0 0 0 12 0 6
0 0 0 0 0 0 0 0 0 0 0 0  6 0 2 0 0 0 8 0 6 0 2 0
0 0 0 0 0 0 0 0 0 0 0 0 0  6 0 2 0 0 0 8 0 6 0 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 6 0 12 0 6 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 6 0 12 0 6
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 2 0 6 0 4 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 2 0 6 0 4

 (2.65)
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 Now, the equations of motion that governs the elastic vibrations are presented by: 
 

 (2.67)

 

20

10 3

10 3

5
3

2  
3

 

5
3

2  
3

 

 20 20    

20 10 cos 10  

 
4

3
  

3
 5 cos 1 

 20 40   

20 30 cos 10 

4
3

  
3

 5 cos 1 

 20 60   

20 50 cos 10 

4
3

  
3

 5 cos 1 

 20 80   

20 70 cos 10 

4
3

  
3

 5 cos 1 

 2 
 2

0
0

 (2.66)
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where   and   denote the 24×24 constant   mass and stiffness matrices respectively, 

 denotes the 24×1 nodal force vector and 

 
        …  (2.68)

 
is the 24×1 nodal displacement vector with and representing the nodal 

translational and rotational displacements respectively at node i with respect to the  -

axis of the boom in  plane, and with and  representing the nodal translational 

and rotational displacements at node i with respect to the  -axis of the boom in  

plane. 

 
It is very important to be noted that, in the total node vector   at node 6  (Eq. 2.66)    

the  tension in the cable  is the only external force which acts on that node with  both 

tension components  and , and all the reaction forces and moments are equal 

zero. But before adding the tension to the force vector, the components of the tension 

in  and  planes  should be determined. 

Using the principle of axis transformation method. The following equations are 

obtained for these components: 

  

 
cos sin sin cos cos cos cos

 sin sin sin (2.69)

 
 

cos sin sin sin cos  
 (2.70)

 
where: 
 

  ,  are the components of the tension in both  and planes  

respectively. 

 
 
Because the boom is clamped at point , the translational and rotational displacements 

of the  elastic boom at node 1 must be zero, so  0, 0, 0 and 0, 
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then the order of mass and stiffness matrices  ,  reduced to 20 20  and the force 

vector   order reduced to 20 1 . Thus, the reduced displacement vector  will be 

represented as follows: 

  
… …  (2.71)

 
 
and the system mass and stiffness matrices respectively will be reduced to the 

following: 

 

420

312 0 0 0 54 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0
0 312 0 0 0 54 0 13 0 0 0 0 0 0 0 0 0 0 0 0
0 0 8 0 13 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 8 0 13 0 3 0 0 0 0 0 0 0 0 0 0 0 0

54 0 13 0 312 0 0 0 54 0 13 0 0 0 0 0 0 0 0 0
0 54 0 13 0 312 0 0 0 54 0 13 0 0 0 0 0 0 0 0
13 0 3 0 0 0 8 0 13 0 3 0 0 0 0 0 0 0 0 0
0 13 0 3 0 0 0 8 0 13 0 3 0 0 0 0 0 0 0 0
0 0 0 0 54 0 13 0 312 0 0 0 54 0 13 0 0 0 0 0
0 0 0 0 0 54 0 13 0 312 0 0 0 54 0 13 0 0 0 0
0 0 0 0 13 0 3 0 0 0 8 0 13 0 3 0 0 0 0 0
0 0 0 0 0 13 0 3 0 0 0 8 0 13 0 3 0 0 0 0
0 0 0 0 0 0 0 0 54 0 13 0 312 0 0 0 54 0 13 0
0 0 0 0 0 0 0 0 0 54 0 13 0 312 0 0 0 54 0 13
0 0 0 0 0 0 0 0 13 0 3 0 0 0 8 0 13 0 3 0
0 0 0 0 0 0 0 0 0 13 0 3 0 0 0 8 0 13 0 3
0 0 0 0 0 0 0 0 0 0 0 0 54 0 13 0 156 0 22 0
0 0 0 0 0 0 0 0 0 0 0 0 0 54 0 13 0 156 0 22
0 0 0 0 0 0 0 0 0 0 0 0 13 0 3 0 22 0 4 0
0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 3 0 22 0 4

 (2.72)
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24 0 0 0 12 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0
0 24 0 0 0 12 0 6 0 0 0 0 0 0 0 0 0 0 0 0
0 0 8 2 0 6 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 8 2 0 6 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0
12 0 6 0 24 0 0 0 12 0  6 0 0 0 0 0 0 0 0 0
0 12 0 6 0 24 0 0 0 12 0  6 0 0 0 0 0 0 0 0
6 0 2 2 0 0 0 8 2 0 6 0 2 2 0 0 0 0 0 0 0 0 0
0 6 0 2 2 0 0 0 8 2 0 6 0 2 2 0 0 0 0 0 0 0 0
0 0 0 0 12 0 6 0 24 0 0 0 12 0  6 0 0 0 0 0
0 0 0 0 0 12 0 6 0 24 0 0 0 12 0  6 0 0 0 0
0 0 0 0  6 0 2 2 0 0 0 8 2 0 6 0 2 2 0 0 0 0 0
0 0 0 0 0   6 0 2 2 0 0 0 8 2 0 6 0 2 2 0 0 0 0
0 0 0 0 0 0 0 0 12 0  6 0 24 0 0 0 12 0 6 0
0 0 0 0 0 0 0 0 0 12 0 6 0 24 0 0 0 12 0 6
0 0 0 0 0 0 0 0  6 0 2 2 0 0 0 8 2 0 6 0 2 2 0
0 0 0 0 0 0 0 0 0  6 0 2 2 0 0 0 8 2 0 6 0 2 2

0 0 0 0 0 0 0 0 0 0 0 0 12 0 6 0 12 0 6 0
0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 6 0 12 0 6
0 0 0 0 0 0 0 0 0 0 0 0 6 0 2 2 0 6 0 4 2 0
0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 2 2 0 6 0 4 2

 (2.73)

 
 
     
  
also, the reduced force vector will be expressed as follows: 
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20

 
 

20 20

20 10 cos 10  

 
4

3
  

3  5 cos 1 

 20 40   

20 30 cos 10 

4
3

  
3  5 cos 1 

 20 60   

20 50 cos 10 

4
3

  
3  5 cos 1 

 20 80   

20 70 cos 10 

4
3

  
3  5 cos 1 

   
  

0
0

 (2.74)

 
  
2.6  Derivation of the operating point  
 
The operating point of the payload variables , , ,  is considered to be equal to 

0,0, , , with   where  is the luff angle, thus , and the wind 

forces 0. 

The elastic translational and rotational displacements vector    can be computed from 

Eq. (2.67) by setting  and the time dependent terms in   equal to zero, i.e. 

 

 (2.75)
where, 
 

   … …  (2.76)
and 
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20
 

20 cos
0
0
0

20 cos
0
0
0

20 cos
0
0
0

20 cos
0
0
0

 20
cos

0
0
0

 (2.77) 

 
In view of equation(2.75), one obtains: 
 

  

   1/3    13 7 /
0

1/2       16   9  /  
0

1/6       89   52  /  
0

1/2       25   16  /  
0

3/2       19   12  /  
0

1/2       29   21  /  
0

2/3       65   44  /  
0

3        5     4  /  
0

25/3       7   5  /  
0

5/2    6 5 /
0

20  
20

20

20

30  
30

30

30

40  
40

40

40

50  
50

50

50

60  
60

60

60

 (2.78) 
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2.7  Expanding the model about the current operating point 
 
In view of equations (2.21, 2.22 and  2.23) and applying Taylor series expansion to the 

payload nonlinear model equations (2.16 and 2.17) yields to the following linearized 

equations: 

 
  Δ 6  sin 0 sin 0 Δ 6 cos 0 Δ

  
 

 Δ
 Δα  1 cos α0 cos 0 60  cos α0 sin 0 

Δ  1 sin α0 sin 0 60  sin α0 cos 0  
Δ 0   Δ
Δ  1 sin α0 sin 0 60 sin α0 cos 0   

(2.79) 

 
 

Δ cos sin 0 Δ sin Δ

 Δ

Δ    sin cos 0  sin sin 0  
Δ cos sin 0  cos cos 0  
Δ
 Δ cos sin 0 cos cos 0  
 Δ  

(2.80) 

 
Similarly, in view of equations (2.21, 2.22, and 2.23), the forces acting on node 6  

(  ,  ) described by equations ( 2.69 and 2.70) can be linearized to:  
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20

 Δ  cos
 20

Δ     cos  sin cos
 20

Δ    cos _  sin cos
 20

Δ   cos
 20

Δ cos
 20

cos
 20

Δψ   cos    sin cos α

  sin cos α  
 20

 Δθ    sin α sin

  cos     sin α sin  
 20

 cos    
 20

∆ sin  sin ρ
 20

∆ sin sin ρ  

(2.81) 

 
 

20
Δ sin α  sin α

 Δθ cos α cos α  
(2.82) 

 
Therefore,  the total mass matrix  becomes: 
 
 
 

420

312 0 0 0 54 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 312 0 0 0 54 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 8 0 13 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 8 0 13 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0

54 0 13 0 312 0 0 0 54 0 13 0 0 0 0 0 0 0 0 0 0 0
0 54 0 13 0 312 0 0 0 54 0 13 0 0 0 0 0 0 0 0 0 0
13 0 3 0 0 0 8 0 13 0 3 0 0 0 0 0 0 0 0 0 0 0
0 13 0 3 0 0 0 8 0 13 0 3 0 0 0 0 0 0 0 0 0 0
0 0 0 0 54 0 13 0 312 0 0 0 54 0 13 0 0 0 0 0 0 0
0 0 0 0 0 54 0 13 0 312 0 0 0 54 0 13 0 0 0 0 0 0
0 0 0 0 13 0 3 0 0 0 8 0 13 0 3 0 0 0 0 0 0 0
0 0 0 0 0 13 0 3 0 0 0 8 0 13 0 3 0 0 0 0 0 0
0 0 0 0 0 0 0 0 54 0 13 0 312 0 0 0 54 0 13 0 0 0
0 0 0 0 0 0 0 0 0 54 0 13 0 312 0 0 0 54 0 13 0 0
0 0 0 0 0 0 0 0 13 0 3 0 0 0 8 0 13 0 3 0 0 0
0 0 0 0 0 0 0 0 0 13 0 3 0 0 0 8 0 13 0 3 0 0

0 0 0 0 0 0 0 0 0 0 0 0 54 0 13 0 156  
840

 0 22 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 54 0 13 0 156 0 22 0 0
0 0 0 0 0 0 0 0 0 0 0 0 13 0 3 0 22 0  4 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 3 0 22 0  4 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
420

sin sin    
420

cos  0 0   
420

0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
420

cos sin
420

sin 0 0 0  
420

Δ
Δ
Δ
Δ
Δ
Δ
Δ
Δ
Δ
Δ
Δ
Δ
Δ
Δ
Δ
Δ
Δ
Δ
Δ
Δ
Δ
Δ  

(2.83)

 
 
and the stiffness  matrix  becomes: 
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24 0 0 0 12 0  6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0  24 0 0 0 12 0  6 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 8 0 6 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 8 0 6 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 6 0 24 0 0 0 12 0  6 0 0 0 0 0 0 0 0 0 0 0
0 12 0 6 0 24 0 0 0 12 0  6 0 0 0 0 0 0 0 0 0 0
6 0 2 0 0 0 8 0 6 0  2 0 0 0 0 0 0 0 0 0 0 0
0 6 0 2 0 0 0 8 0 6 0 2 0 0 0 0 0 0 0 0 0 0
0 0 0 0 12 0 6 0 24 0 0 0 12 0  6 0 0 0 0 0 0 0
0 0 0 0 0 12 0 0 24 0 0 0 12 0  6 0 0 0 0 0 0
0 0 0 0  6 0 2 0 0 0 8 0 6 0 2 0 0 0 0 0 0 0
0 0 0 0 0  6 0 2 0 0 0 8 0 6 0 2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 12 0 6 0 24 0 0 0 12 0  6 0 0 0
0 0 0 0 0 0 0 0 0 12 0 6 0 24 0 0 0 12 0  6 0 0
0 0 0 0 0 0 0 0  6 0  2 0 0 0 8 0 6 0 2 0 0 0
0 0 0 0 0 0 0 0 0  6 0 2 0 0 0 8 0 6 0 2 0 0

0 0 0 0 0 0 0 0 0 0 0 0 12 0 6 0 12 0 6 0
20

     sin α sin   cos    sin α sin  
20

   cos     sin cos α   sin cos α  

0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 6 0 12 0 6
 20

      cos α   cos α
 20

    sin α  sin α

0 0 0 0 0 0 0 0 0 0 0 0  6 0 2 0 6 0  4 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0  6 0 2 0 6 0  4 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0    0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0     

Δ
Δ
Δ
Δ
Δ
Δ
Δ
Δ
Δ
Δ
Δ
Δ
Δ
Δ
Δ
Δ
Δ
Δ
Δ
Δ
Δ
Δ

 (2.84) 

 
With force vector : 

 
20

 
 

                20 sin Δ 20 sin Δ  20 Δ cos 20 Δ sin cos 20 Δ cos sin 20  Δ 20    Δ  

20 Δ cos 20 Δ sin  Δ 10 cos 10  

 
4   Δ

3
4  Δ

3
  Δ

3
 5 cos 1 

     20 sin Δ 20 sin Δ  20 Δ cos   20  Δ sin cos 20 Δ cos sin 40   Δ  40   Δ

20 Δ cos 20 Δ sin  Δ 30 cos 10 

 
4   Δ

3
4  Δ

3
  Δ

3
 5 cos 1 

    20 sin Δ 20 sin Δ  20 Δ cos   20  Δ sin cos 20 Δ cos sin 60   Δ  60   Δ

20 Δ cos 20 Δ sin  Δ 50 cos 10 

  
4   Δ

3
4  Δ

3
  Δ

3
 5 cos 1 

     20 sin Δ 20 sin Δ  20 Δ cos   20  Δ sin cos 20 Δ cos sin 80   Δ  80   Δ   

20 Δ cos 20 Δ sin  Δ 70 cos 10 

  
4   Δ

3
4  Δ

3
  Δ

3
 5 cos 1 

 
20

 Δ  cos  
 20

Δ     cos  sin cos
 20

Δ    cos _  sin cos
 20

Δ cos    
 20

∆ sin  sin ρ
 20

∆ sin  sin ρ
 20

 cos   

 0  
0
0

20
 Δα  cos α cos  cos α sin  Δ  sin α sin  sin α cos   Δ    Δ Δ  sin α sin  sin α cos   

20
Δ    sin cos  sin sin   Δ cos sin cos cos Δ Δ cos sin  cos cos    Δ

 (2.85)

 
 
 
  Now the linear equations of motion of the crane can be expressed as: 
 

 (2.86)
 
Where 

Δ    Δ Δ     Δ  … … Δ Δ Δ Δ Δ  Δ   (2.87)

denotes the 22×1 generalized displacement vector, and 
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Δ Δ Δ Δ  (2.88)

 
denotes the 4×1 generalized measured disturbance vector, and 
 

Δ Δ Δ  (2.89)
 
denotes the 3×1 generalized the control input vector, and 
 

Δ Δ Δ  (2.90)
 
denotes the 3×1 generalized wind force vector, and 
 
    and   are the total mass and stiffness matrices respectively of order 22×22, B1 

and B2 are disturbance matrices of order 22×4,  

20

0 0 0 20 sin
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0   20 sin
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0   20 sin
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0   20 sin
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0  

 20
  sin 0 sin 0   

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

  (2.91)
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20  cos 0 sin 0 20  cos 0 20 sin 0 cos 0 20    
20 Δ 0 sin 0 0 20 cos 0 0

0 0 0   

0 0 0 0
20  cos 0 sin 0 20  cos 0 20    sin 0 cos 0   40    

20  sin 0 0 20    cos 0 0
0 0 0   

0 0 0 0
20  cos 0 sin 0 20  cos 0 20    sin 0 cos 0   60    

20  sin 0 0 20   cos 0 0
0 0 0   

0 0 0 0
20  cos 0 sin 0 20  cos 0 20    sin 0 cos 0   80    

20  sin 0 0 20   cos 0 0
0 0 0   

0 0 0 0
0      20  cos 0 0      20  

1
cos2

0
 20

60
 sin 0 cos 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 20

20   sin α sin  sin α cos   

 20 20
0 0 cos sin  cos cos

 (2.92)

 
B3 and B4 are input matrices of order 22×3, 

 
 
 
 
  
 

20

  20 sin 0 0
0 0 0
0 0 0
0 0 0

  20 sin 0 0
0 0 0
0 0 0
0 0 0

  20 sin 0 0
0 0 0
0 0 0
0 0 0

  20 sin 0 0
0 0 0
0 0 0
0 0 0

 
 20

  sin sin    0 0
0 0 0
0 0 0
0 0 0

0 0
20

 

0 0
20

 

  

 
 

(2.93) 
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20   

20   0 0
0 10 cos 10 0

4    
3 0 0

0
   

3  5 cos 1 0

40    0 0
0   30 cos 10 0

4    
3 0 0

0
   

3  5 cos 1 0

60    0 0
0   50 cos 10 0

4    
3 0 0

0
   

3  5 cos 1 0

80    0 0
0   70 cos 10 0

4    
3 0 0

0
   

3  5 cos 1 0

   
 20

 cos
 20

 sin cos  0
  20

 cos

0 0 0
0 0 0
0 0 0

20
    sin α sin  sin α cos    

20
   cos α cos  cos α sin  0

20
  cos sin  cos cos

20
sin cos sin sin   0

  (2.94) 

 
 
 
and B5 is the wind disturbance matrix, 
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20

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

0
 20

cos   0
0 0 0
0 0 0
0 0 0

0 0
20

20
0 0

  (2.95)

 
  
The measurement vector   and the interested outputs y are specified as 
 

Δ Δ  
         (2.96)

                                                  
 
 
where   is the measurement matrix of order 4×22; it describes the position of the 

sensors on the crane.           

 

             Δ …     Δ Δ     

   

0     1      0     0     0
0    …  0      1     0     0
0    …  0      0     1     0
0    …  0      0     0     1
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3  Control system design 

 

3.1  Introduction 
 
This chapter presents the observer and controller design in order to minimize the 

pendulation of the payload which can be induced from ship rolling or from any other 

disturbance that can act on the crane during the cargo transfer operation. When the 

frequency of the ship rolling is close to the eigenfrequency of the crane for a period of 

time, resonance will occur and the pendulation of the payload can grow to a dangerous 

level even with small amplitude of the disturbing  motion. This means that, if no 

control is used, the operation of the crane should be suspended. This control problem is 

explained in detail in this chapter. 

 
3.2  State space representation 
 
The linear equations of motion of the elastic boom and the payload, obtained   in Eq. 
(2.86), can be rewritten as 
 

. (3.1)
 
 To obtain the state space model for the above equation, let   
 

 (3.2)
(3.3)

 
Then from Eq. (3.2) 
 

.  
. (3.4)

 
Thus the state space equations, corresponding to the current operating point, can be 

expressed in vector form as 

 
(3.5)

 
where 
 

 (3.6)
 



 

36 

 

denotes the state vector of order 44×1, and 
 

  , (3.7)

  

 , (3.8)

 
represent the corresponding system and input matrices respectively, and 
 

  , (3.9)

 

, (3.10)

 
represent the disturbance matrices due to ship rolling and disturbance force acting on 

the payload respectively. Here   is assumed to be non-singular. 

 
In view of Eqs. (3.2, 3.3), the initial conditions of the states can be expressed as 
 

  . (3.11)

 
The displacement vector    from Eq. (3.3) can be rewritten as  
 

       (3.12)
 
Therefore, the measurements  , given by Eq. (2.96), can be written as 
 

 , (3.13)
 
where 
 

  (3.14)
 
denotes the output matrix, and 
 

, (3.15)
 

    
, (3.16)
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represent the input and disturbance direct transmission matrices respectively. Here the 

rolling motion of the ship ∆δ  in addition to the displacements   Δ  , Δ  , Δ   are 

assumed to be measured. 

 
3.3  Simulation results 
 
In order to find the effect of the disturbances ∆ , ∆ , ∆ , ∆ . The simulation 

was done to the state space model, applying the minimum eigenvalue of the system 

matrix  as the frequency  of the sinusoidal disturbance acting on the system, the result 

of the simulation was as follows:  

  

 

 
 

Figure 3.1:The effect of ∆  on the crane . 
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Figure 3.2:The effect of ∆  on the crane . 

 

 
 

Figure 3.3:The effect of ∆  on the crane . 
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Figure 3.4:The effect of ∆  on the crane . 
 

We can conclude from the figures above that amplitude of vibration grows without 

limit due to disturbances that have a frequency matching  the fundamental  eigenvalue 

of the system, and this is the problem that to be solved by building a suitable controller. 

 

Also, simulation results for different initial conditions of the payload cable   ,   

are shown in figures (3.5,6,7), it is clear that any non zero initial condition of the 

payload cable results in periodic oscillation. This is reasonable because the internal 

damping   is neglected. 
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Figure 3.5:The effect of initial condition of ∆ 1  ,  

∆ 0  on the crane . 

 
Figure 3.6: The effect of initial condition of ∆ 0  ,  

∆ 1  on the crane . 
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Figure 3.7: The effect of initial condition of ∆ 1  ,  

∆ 1  on the crane . 
 

3.4  State and disturbance estimation 
 
In order to design an optimal state feedback controller, all state variables must be 

achievable. In most cases, as it is seen in the ship crane under consideration, not all the 

state variables are measured since the required sensors are not available due to 

economic or practical reasons. Only 4 out of 44 states can be easily measured which 

are  Δ      Δ               . In order to reconstruct the entire state vector , a suitable 

observer can to be designed as a first step to realize optimal state controller design if 

the related conditions for applications are fulfilled. Since the state space model of the 

crane contains the unknown disturbance forces  p, the state variables and the unknown 

disturbance can be estimated by using a special observer design able to reconstruct 

system states in presence of additional unknown effects acting on the system. Here a 

extendable observer   [7, 9, 10, 11] could be used. The structure of this observer is 

shown in Fig. 3.8. The estimated states are represented by the equations 
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(3.17)
 
and the unknown disturbance is reconstructed by 
 

  (3.18)
 
where   is the output of the observer,   and   are the observer gain matrices of 

appropriate dimensions. Due to the difficulty of finding a simple linear model that can 

adequately describe the unknown disturbance, which is principally unknown, a suitable 

design procedure is necessary. Since any continuous signal can be approximated by a 

series of step functions, a practical choice for the linear model corresponding to the 

estimate of   is a stepwise-constant approximation. If the signal is fast, then the 

observer dynamics should be also fast for the approximation to hold. Since the main 

expected cause of  is the wind force, which usually has a low frequency, the 

disturbance can be estimated adequately without the need to use a relatively high gain 

approach. Therefore, the modified extended model can be written as 

 

 
                          

(3.19)

 
with 

 (3.20)

 
This model gives the base for the  observer development [7, 10, 12, 13]. It is necessary 

that the extended system is observable, i.e., 

 

dim dim  (3.20)

 
is satisfied for all eigenvalues λi of the system.  

Now consider  the real system represented by Eq. 3.5 it can be written in another form 

as follows: 
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(3.22)
 

Now, we can write the  above two equations can be written in compact form as: 
 

0  (3.23)

 

By subtracting Eq. 3.23 from  Eq.3.19, the error dynamics of the extended observer 

can be expressed by:  

 

(3.24)
 
where 

 (3.25)

 
denotes the error vector of the extended observer, and  
 

0  (3.26)
 
represents an input matrix to the error equation. Here the gain matrix of the observer 

  is found by minimizing a linear quadratic performance index, which leads to 

solving the algebraic Riccati equation:  

 
  

.1 0=−++ − PCRPCQPAPA ee
T
ee

T
ee  (3.27)

 
Here, this equation is solved using the built in matlab function  such that: 
 

, , ,  (3.28)
 
 

 (3.29)
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Figure 3.8:  Structure of the extended observer . 
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where   represents the transpose of the extended system matrix with dimension 

47  47 and  is the transpose of the extended  system measurement matrix with 

dimension 4 47,  47  47 and   4  4  are symmetric positive definite 

weighting matrices for the extended states and the measurements respectively .  

  
 One important point to be mentioned here is that the estimation error corresponding to 

the last three states of the wind forces      in   matrix have to be 

weighted much more than the other 44 states, i.e., the observer eigenvalue 

corresponding to last state should be far to the left of the other eigenvalues in the 

complex plane, we can accomplish this by setting the last entities in  corresponding 

to the wind forces very big weight. All other eigenvalues are weighted such that the 

observer is asymptotically stable and sufficiently faster than the real passive system. 

This guarantees that the observer error converges to zero in real time, which means 

that the estimates converge to their real values in real time and are ready for the 

implementation of an optimal state feedback controller; this strategy is successfully 

used for fault diagnosis of large systems [7, 10] and other engineering applications [7, 

11, 13].  

Simulation result for an actual wind forces signal  and their estimated values from the 

observer are shown in Fig. 3.9.  All the simulation result are based on the following  

crane parameters: 

3 , 100 , 45°, 20°   

 5  are the actual values of the wind forces. 

The simulation results in figures (3.9, 10, 11) were done under the effect  of rolling  

disturbance ∆   with frequency close to the fundamental eigenvalue of the system. 

As you can see from Fig.3.8 the observer estimated the wind forces with dynamic error 

approached zero. 
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          Figure 3.9: The actual and the estimated signals of the wind forces.  
 

 The simulation result for the  unmeasured displacements and their time derivatives 
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are shown together with their estimation values in Fig.3.9 

and Fig 3.10 respectively. 
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Figure 3.10: The actual and estimated signals of ∆ ∆ . 
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Figure 3.11: The actual and estimated signals of ∆ ∆ . 

 
All the above simulation results are done under the effect of sinusoidal measured 

disturbance . As we can see from Fig. 3.10 and Fig. 3.11 the observer estimates the 

unmeasured states with a dynamic error equal to zero. 

As you can see from Fig. 3.12 when the initial conditions of the observer are set to 

zero and the actual initial condition vector of the original system is characterized by 

. Note that the error of the observer due to the difference in the initial 

conditions disappears in the first second, and the observer estimates the wind forces 

very well. 
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          Figure 3.12: The actual and the estimated signals of the wind forces under the              

effect of the initial conditions of original system. 
 
 
It is clear from Eqs.3.23 that the observer gain matrix  depends directly on the 

extended system matrix   in addition to the measurement matrix .Also, the matrix 

 depends on the system matrix  which is governed by the mass matrix   and the 

stiffness matrix  . Since  and  are calculated at the current operating point, 

which varies with the length of the payload cable   , the boom luff angle ρ  and the 

slew  angle  , the observer gain matrix   must be updated according to the current 

operating point. This leads to the concept of developing a variable-gain extended 

observer which can cover all possible operating points of the crane.  

 

To  design  such an observer, the length of the payload  cable    is divided into three 

ranges  with an increment of 2 , the luff angle  is divided into three ranges with an 

increment of 20°and the slew  angle  is divided into 12 ranges with an increment of 

30° as shown in figure 3.13 which means that the operating of the crane is covered by   

3 3 12 108 region, each region is characterized by an integer number  that 
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switching between these gains takes place automatically according to the output  of 

the region finder (Fig. 3.13), which uses the measurements of the luff angle, the length 

of the cable and the slew angle to detect the current operating region.  
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Figure 3.13: The operating regions of the crane. 

 
3.5  Controller design 
 
The extended observer discussed in section 3.4 reconstructs the states and the 

unknown wind forces p, now one can design  a state feedback  controller  for the 

model given by Eqs. (3.5) and (3.13), in order to  reduce the effect of the disturbances 

and to ensure safe cargo transfer of the cane.  
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3.5.1  Optimal state feedback control   
 
Using the extended state observer described in section 3.3, an optimal linear state 

feedback controller can be designed if the system is completely state controllable (the 

system is said to be controllable if an input to a system can be found that takes every 

state variable from desired initial state to desired final state) if the eigenvalue are 

distinct. State controllability can be confirmed by transformation the state space model 

given by Eq. (3.5) into a diagonal conical form or (Jordan canonical form); 

 
 
Let 
 
 

 (3.30)

where  
 
          columns are the eigenvectors of the system matrix  
 
so the transformed model will be as  
 

 (3.31)

 
 
the matrix  represents the modal canonical system matrix form in which its diagonal 

represents the eigenvalues of the system, so to ensure the state controllability, the input 

matrix  must have no rows with zeros for all values of payload cable  , the rolling 

angle  and the slew angle  under consideration [7, 14].   

 

In order to design a closed loop state feedback controller, all the state variables are fed 

back to the control input  vector through again matrix  so the input vector  can 

be written as: 

 
 (3.32)

 
By inserting Eq. (3.32) into Eq. (3.5) gives 
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   (3.33)

The new system matrix  matrix depends on the original system matrix  ,the 

original input matrix  and the gain closed loop state feedback control . Now by 

changing the gain matrix we can change the place of the eigenvalues  of the system to 

reduce the  effect of the disturbances that act on the crane and to ensure safe cargo 

transfer of the cane. 

 
The state feedback matrix   can be calculated as 
 

 (3.34)
 
where  represents the solution of the algebraic Riccati equation [7, 15, 16]  
  
 

.1 0=−++ − PBPBRQPAPA TT  (3.35)
 
Here Q and R are symmetric positive definite weighting matrices of the states and 

inputs respectively [7, 17]. According to the numerical structure of these matrices, the 

eigenvalues of the controlled crane system can be altered to get the required behavior 

of the dynamic response. In reality, the estimated states are used in the feedback loop 

instead of their real values. Therefore, to guarantee the operation of the controller, the 

observer must be faster than the real system. Therefore, the eigenvalues of the observer 

are placed enough to the left of the eigenvalues of the controlled crane; this can be 

done by tuning the numerical structure of the corresponding weight matrices. It is also 

important to mention here, that the numerical values of the controller gain    must be 

updated according to the current operating, which is governed by the current length of 

the rope  , the current luff angles ρ0 and the slew angle   is determined by the 

region finder as discussed before in section 3.4. A block diagram representation of the 

proposed control strategy is shown in Fig. 3.14.   
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Figure 3.14:  Block diagram of the control system. 
 

 
3.6  Robustness    
 
Stability and performance robustness must be taken into consideration in designing 

feedback control systems. A stable closed loop feedback control system is said to be 

robust with respect to stability if it remains stable after some changes have been made 

in the physical or control parameters of the system. In addition, if the system still 

fulfills a given level of acceptability of a specific performance criterion such as 

damping or settling time, then the system is said to be robust with respect to its 

performance [7, 18]. Here the parameters of the crane vary depending on the current 

operating point leading to a multi-model problem. Accordingly, the used control 

strategy is based on dividing the operating parameter space into 9 uniform regions for 

each layer (number of layers 12 ) shown in Fig 3.13 ; each region uses a different 
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controller/observer gain set. The size of the region is limited such that the stability and 

performance robustness of the closed loop control system are ensured over the region. 

There are many methods to check robustness over the operating region; in the crane 

under consideration, robustness is guaranteed such that, for all operating points inside 

each individual region, the dominant eigenvalues of the closed loop system remain in 

the neighborhood of their nominal values that correspond to the calculated gain of the 

controller.  

 
To find the appropriate point inside the region at which the corresponding controller 

gain should be calculated, consider for example the region   in the first layer shown 

in Fig. 3.15, and assume, as a first trial, that the region is covered by a constant gain 

controller and a constant gain observer, and assume that the gain matrix is calculated at 

the center of the region, i.e., the observer gain matrix and the controller gain matrix are 

calculated at ρ     15° 35° /2 ,   1 3 /2   and 15°these 

values represent the center of the operation region  . The weighting matrices  and 

 for the controller are selected such that, sufficient damping is created in the crane. 

 and  for the observer are selected such that the dominant eigenvalues of the 

observer to be placed far enough to the left of the dominant eigenvalues of the 

controller to make the observer faster than the controller to estimate the unmeasured 

states and wind forces to   feed the controller with the estimated data. Since  and  

vary with the current operating point  , ρ  ,  inside the current region, the 

eigenvalues also vary consequently.  

 
The plotting of the imaginary parts versus real parts of the three dominant eigenvalues 

of the closed loop system λ  , λ  , λ   due to the variation in , ρ   and  inside 

the region  , are shown in Fig. 3.16 . It can be easily recognized that as the operating 

point varies inside the considered region the eigenvalue  λ  get closer to the imaginary 

axis, which means that the crane will lose a considerable percentage of its relative 

stability with a reduction in the damping ratio.  
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Figure 3.15: Operating regions  , 1, … . ,108 
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Figure 3.16 : The plotting of λ , λ , λ   for R1 , the design point  
is the center point of the region. 

  
 
To overcome this problem, the observer and the controller gains should be updated 

continuously inside the operating region according to the current value of   

 , ,   to preserve the damping ratio and relative stability over the region. In 

this way, the gains are calculated at each individual corner of the considered region; 

the weight matrices are chosen to produce nearly the same relative stability and 

damping at each corner, and each corner gain should provide a stable operation of the 

crane for all possible operating points inside the region. The total value of the 

controller gain, corresponding to the current operating point, is described by the 3-D 

interpolation polynomial in Eq.3.36. 

 
  

  
, ,  (3.36)
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where  ,  and  denote the  local normalized coordinate of the region as shown in 

Fig.3.17, , , ,  denote the polynomial coefficient matrices, the numerical values 

of the these coefficient matrices  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.17: the local coordinates of region  . 
 
depend on the gains associated with the corners of the region. 
 
Each corner gain is assumed to satisfy the given interpolation polynomial; thus the 

following assumptions were made: 

 

0,0 ,0        
1,0,0        
0,1,0                
1,1 ,0        
0,0,1       
1,0,1        
0,1,1      
1,1,1   

(3.37)

 
therefore, the coefficients of this polynomial can be calculated from Eq. (3.36)  and 

Eq.(3.37) to get 

 
    
      
       
  
      
      

(3.38)
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 6  
    

 
Substituting Eq. (3.38) into Eq. (3.36) gives 
 

 1

 
(3.39)

 
Similarly, the corresponding value of the extended observer gain matrix can be 
expressed as 
 

1

 

(3.40)

 
This includes that the gains can be updated continuously according to the local x- , y-

and z-coordinates of the current operating point. The distribution of the dominant 

eigenvalues corresponding to   (i.e., x∈[1;0] , y∈[1;0], z∈[1;0]) are shown in figure 

3.18. Note that the regions of the dominant eigenvalues are considerably contracted. 

Therefore, the relative stability and the damping property are preserved for all 

operating points inside the region.  
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Figure 3.18 : The plotting of λ , λ , λ   for R1 , after the updating of gains for 

each operating point. 
  

Another significant advantage acquired using this interpolation method is that, the 

problem which may appear due to a stepwise change of the controller gain between 

two different regions is avoided.   

 
 
3.7  Simulation results    
 
Simulation results for different operating conditions, based on the developed 

continuous gain method, are shown in Figs. (3.19-3.26). In Figs. (3.19-3.22) the 

payload is subjected to the initial condition  /5 rad with different operating 

conditions in terms of the luff , slew  angles and payload cable length . Here 

the crane is allowed to vibrate for the first 5seconds, and then the controller is turned 

ON at t =5 seconds to check the operation of the controller and its ability to suppress 

the vibrations of the crane. The simulation was conducted with the following 
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assumptions of the crane geometry, the payload mass 100  the elastic boom 

length 5 and the circular cross section of the elastic boom has outer diameter 

.12  and inner diameter .1 . 

 
In Fig. 3.23 the ship is subjected to sinusoidal rolling disturbance ∆  with a variable 

frequency. The response for a sinusoidal rolling close to the average value of the first 

eigenfrequency of the crane and payload is given in Fig. 3.23. And the effect of a 

nonzero initial condition in addition to the rolling disturbance is shown in Fig. 3.25. In 

all cases the observer has no knowledge about the initial condition of the crane. i.e., 

the initial condition of the observer is set to be zero. In Fig. 3.26, a nonzero 

disturbance force acting directly on the payload is included. For all of the above 

mentioned cases, it can be recognized that the controller performs very well and the 

oscillations are reduced significantly without any noticeable abnormal secondary effect 

or chattering in the response due to changing the operating region of the crane. 
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 Figure 3.19: Constant cable length, constant 
luff and slew  angles with rad as 
initial conditions Control is turned ON at t=5 
sec 
 

 Figure 3.20: Variable cable length, constant luff 
and slew  angles with  rad as initial 
conditions Control is turned ON at t=5 sec 
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Figure 3.21:  Variable cable length, variable 
luff angle and constant slew  angles with 

 rad as initial conditions. Control 
is turned ON at t=5 sec 
 

  
Figure 3.22:  Variable cable length, variable 
luff angle and variable slew  angles with 

 rad as initial conditions. 
Control is turned ON at t=5 sec 
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Figure 3.23: Constant cable length, 
constant luff and slew  angles with   
sinusoidal rolling at the average value 
of the first eigenfrequency. Control is 
turned ON at t=5 sec. 

   
Figure 3.24: : Variable cable length, 
variable luff and slew  angles with 
sinusoidal rolling at the average value of 
the first eigenfrequency. Control is turned 
ON at t=5 sec. 
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 Figure 3.25: Variable cable length, 
variable luff and slew  angles with 
sinusoidal rolling at the average value 
of the first eigenfrequency and 

 rad as initial conditions.. 
Control is turned ON at t=5 sec. 

 Figure 3.26: Variable cable length, variable 
luff and slew  angles with   sinusoidal 
rolling at the average value of the first 
eigenfrequency and sinusoidal wind forces  
. Control is turned ON at t=5 sec. 
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Also, the control system is simulated for a chaotic rolling disturbance . Here the 
chaotic rolling motion is generated with frequency close to the first eigenvalue of the 
system using the Chua’s equations set which is one of the popular tools for producing 
such signal. A general dimensionless state equation for a Chua’s Oscillator is given as 
[7, 19]  
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where α, σ, γ, a, b, and k are constant parameters. For the selection: α = 15.6, σ = 
28.58, γ = 0, a = −1.14286, b = -0.714286, k = 1, with the initial conditions ϑ1(0) = 
1.16346, ϑ2(0) = −0.4972335, and ϑ3(0) = −0.905656, the solution of Chua’s equations 
for ϑ1(t) is chaotic. Therefore, the rolling excitation is chosen as 
 

),()( 1 tmt ϑδ =∆  (3.43)
 
where m is constant; it’s value determines the amplitude of the chaotic rolling. The 
numerical solution of the above three equations   is displayed in Fig. 3.27 bellow. 
 

 
Time[sec] 

 
Figure 3.27: Chaotic rolling displacement. 

 
 The responses due to chaotic rolling excitation of the ship are shown in Fig. 3.28, it 
can be recognized that the measured oscillations can increase significantly if no control 
is used, and they are well suppressed when the controller is used. In Fig. 3.29 the crane 
is subjected to rolling disturbance with frequency closed to first eigenvalue frequency 
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of the system but in this time the payload mass was changed to 50 kg  , it can be seen 
that that the controller performs very well despite the payload mass was reduced . 
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Figure 3.28: The responses for chaotic 
rolling of the ship. Control is turned ON 
at t=5 sec. 
   

 Figure 3.29: Constant cable length, 
constant luff and slew  angles with   
sinusoidal rolling at the average value of 
the first eigenfrequency. Control is 
turned ON at t=5 sec. 50  
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4 Summary, conclusions, and recommendations 
 
4.1 Summary and conclusions 
 
The full nonlinear mathematical mode1 of an elastic ship-mounted crane   is derived. 

The obtained model describes the coupled dynamics of the elastic boom and the 

payload. Taylor series expansion method is utilized to expand the model about the 

current operating  point, which varies with the length of the payload cable, the luff   

and the slew angles of the boom. The  linear model is considered to design the variable 

gain model-based controller.  

 

Since the model is linearized about the current operating  point which is dependent on 

the operator commands (the cable length, the boom operate luff and slew angles), the 

dynamic of the crane is described using a multi model approach; each model is valid 

only for a specified operating point and therefore for a defined region in the 

neighborhood of the operating point.  

 

The state space model was derived to the linear mathematical model, the simulation   

shows that,  when the disturbances affecting the crane is close to any of the eigenvalue 

of the crane system, resonance occurs and the vibrations will grow up without limit. 

Also the state space model was tested under the effect of different initial conditions of 

the system. 

 

Observability and controllability are guaranteed using four measurements and three 

control inputs. The states in addition to the disturbance force acting on the payload are 

reconstructed by designing an extended observer. An optimal state feedback controller 

was designed  based on the states reconstructed by the extended observer; its duty is to 

create the necessary damping to suppress the vibrations due to disturbances  and  

nonzero initial conditions acting on the payload, it is also responsible to suppress the 

vibrations caused by operator commands (hoisting and lowering the payload). 
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A variable gain observer and a variable-gain controller are designed to control the 

crane which represented by a multi-model problem; the numerical values of the gains 

are updated in real time according to (a) the current operating region, which is 

determined by the region finder, and (b) the location of the current operating point 

inside the current region. Each operating region has eight corners, and each corner has 

its own observer and controller gain set. The actual controller and observer gains at 

any point inside the region are calculated using 3D interpolation polynomial; this 

ensures a smooth operation of the controller and preserves the stability and 

performance robustness as demonstrated using the plotting of the distribution of the 

dominant eigenvalues of the controlled system . In addition, transition of the controller 

between different operating regions (leaving a certain operating region and entering a 

new region) takes place gradually and in a smooth manner because any two successive 

regions have a common edge of four common nodes. This guaranteed that no stepwise 

change in the gains occurred and therefore chattering in the response is avoided. 

Simulation results showed that the payload cable length and the luff angle have the 

dominant effect in determining the size of each region but the slew angle has very 

small effect. 

 

Consequently, this work can be considered as a background for a new construction of 

ship mounted cranes of elastic booms which can carry out the cargo transfer faster than 

rigid boom cranes with less power consumption.  This distinguishes the proposed 

crane design from the previous cranes which have rigid booms . Another important 

advantage which should be added here is that, the proposed crane can operate safely in 

the worst case scenario of sea motion excitations at the resonance frequencies. This is 

due to the controllability capability obtained by using the three inputs together. 
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4.2 Recommendations 
 

For further studies and future works, we recommend the following: 

1. Include the dynamics of the actuator in the model 

2. Design a filter in the input side to contribute in damping out the oscillations 

coming from the operator command inputs. 

3. Conducts experiments to validate the controller operation. 

4. Extend the controller to include a tracking loop to guarantee smooth tracking 

of the operator command.  
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Appendix A 
 
Matlab code 
 
The main program. 
 
clear all 
format long 
  
ro=8000; 
syms w2 v2 gama2 phi2 w3 v3 gama3 phi3 w4 v4 gama4 phi4 
syms w5 v5 gama5 phi5 w6 v6 gama6 phi6 theta opsi 
l=1;                                       %length of one element of the 
elastic boom in(m) 
mp=100  ;                                  %weight of the payload in (kg) 
row0=45*pi/180;                            % luff angle in (degrees) 
L2 =4   ;                                     %length of the payload cable 
in (m) 
alph0=  20*pi/180;                           %outplanar motion of the 
elastic boom (degrees) 
 Ee=207*10^9 ;                              % modulus of elasticity in 
(pascal) 
 Do=0.12;                                  % radius of the cross section of 
the elastic boom in(m)                                  
Di=0.1; 
 I=(1/64)* pi*(Do^4-Di^4);                 %I:-moment of inertia        
(m^4) 
vol=(pi/4)*(Do^2-Di^2)*l; 
me=  ro*vol;  
Py=5;Px=5;Pz=5;                           %wind step forces in (N) 
g=9.81;                                   %gravity acceleration in (m/s^2) 
L1=5*l;                                   % total length of the elastic 
boom in (m) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%% 
%---Total mass matrix u=[w2; v2; gama2; phi2; w3; v3; gama3 ;phi3; w4 
;v4;gama4; phi4;w5 ;v5 ;gama5; phi5; w6 ;v6; gama6; phi6;theta;opsi]; 
mtotal =  ((  me*l)/420) ... 
   * [312,      0,      0,      0,     54,      0,  -13*l ,      0,      0,      
0,      0,      0,      0,      0,      0,      0,      0,      0,      0,      
0,0 ,0; 
      0,    312,      0,      0,      0,     54,      0,  -13*l,      0,      
0,      0,      0,      0,      0,      0,      0,      0,      0,      0,      
0,0 ,0; 
      0,      0,  8*l^2,      0,   13*l,      0, -3*l^2,      0,      0,      
0,      0,      0,      0,      0,      0,      0,      0,      0,      0,      
0,0,0; 
      0,      0,      0,  8*l^2,      0,   13*l,      0, -3*l^2,      0,      
0,      0,      0,      0,      0,      0,      0,      0,      0,      0,      
0,0,0; 
     54,      0,   13*l,      0,    312,      0,      0,      0,     54,      
0,  -13*l,      0,      0,      0,      0,      0,      0,      0,      0,      
0,0,0; 
      0,     54,      0,   13*l,      0,    312,      0,      0,      0,     
54,      0,  -13*l,      0,      0,      0,      0,      0,      0,      0,      
0,0,0; 
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  -13*l,      0, -3*l^2,      0,      0,      0,  8*l^2,      0,   13*l,      
0, -3*l^2,      0,      0,      0,      0,      0,      0,      0,      0,      
0,0,0; 
      0,  -13*l,      0, -3*l^2,      0,      0,      0,  8*l^2,      0,   
13*l,      0, -3*l^2,      0,      0,      0,      0,      0,      0,      
0,      0,0,0; 
      0,      0,      0,      0,     54,      0,   13*l,      0,    312,      
0,      0,      0,     54,      0,  -13*l,      0,      0,      0,      0,      
0,0,0; 
      0,      0,      0,      0,      0,     54,      0,   13*l,      0,    
312,      0,      0,      0,     54,      0,  -13*l,      0,      0,      
0,      0,0,0; 
      0,      0,      0,      0,  -13*l,      0, -3*l^2,      0,      0,      
0,  8*l^2,      0,   13*l,      0, -3*l^2,      0,      0,      0,      0,      
0,0,0; 
      0,      0,      0,      0,      0,  -13*l,      0, -3*l^2,      0,      
0,      0,  8*l^2,      0,   13*l,      0, -3*l^2,      0,      0,      0,      
0,0,0; 
      0,      0,      0,      0,      0,      0,      0,      0,     54,      
0,   13*l,      0,    312,      0,      0,      0,     54,      0,  -13*l,      
0,0,0; 
      0,      0,      0,      0,      0,      0,      0,      0,      0,     
54,      0,   13*l,      0,    312,      0,      0,      0,     54,      0,  
-13*l,0,0; 
      0,      0,      0,      0,      0,      0,      0,      0,  -13*l,      
0, -3*l^2,      0,      0,      0,  8*l^2,      0,   13*l,      0, -3*l^2,      
0,0,0; 
      0,      0,      0,      0,      0,      0,      0,      0,      0,  -
13*l,      0, -3*l^2,      0,      0,      0,  8*l^2,      0,   13*l,      
0, -3*l^2,0,0; 
      0,      0,      0,      0,      0,      0,      0,      0,      0,      
0,      0,      0,     54,      0,   13*l,      0,    156+ (840*mp 
*cos(row0)*cos(row0)/(me*l^2)) ,      0,  -22*l,      0,0, 0; 
      0,      0,      0,      0,      0,      0,      0,      0,      0,      
0,      0,      0,      0,     54,      0,   13*l,      0,     156  ,      
0,  -22*l,0,0; 
      0,      0,      0,      0,      0,      0,      0,      0,      0,      
0,      0,      0,  -13*l,      0, -3*l^2,      0,  -22*l,      0,  4*l^2,      
0,0,0; 
      0,      0,      0,      0,      0,      0,      0,      0,      0,      
0,      0,      0,      0,  -13*l,      0, -3*l^2,      0,  -22*l,      0,  
4*l^2,0,0; 
      0,      0,      0,      0,      0,0,0,0,0,0,0,0,0,0,0,0,   (-
420*mp*L2 *sin(alph0)*sin(row0)/(me*l)),   (  420*mp*L2 
*cos(alph0)/(me*l)),  0,  0,  ( 420*mp*L2^2/(me*l)),    0; 
      0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,    ( -420*mp*L2 
*cos(alph0)*sin(row0)/(me*l)),   ( -420*mp*L2 *sin(alph0)/(me*l)),  0,   0,   
0, (420*mp*L2^2/(me*l)) ];% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%----Total stifiness matrix u=[w2; v2; gama2; phi2; w3; v3; gama3 ;phi3; w4 
;v4; gama4; phi4;w5 ;v5 ;gama5; phi5; w6 ;v6; gama6; phi6;theta;opsi];  
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ktotal =(Ee*I/l^3)*[    24,     0,     0,     0,   -12,     0,   6*l,     
0,     0,     0,     0,     0,     0,     0,     0,     0,     0,     0,     
0,     0,0,0; 
     0,    24,     0,     0,     0,   -12,     0,   6*l,     0,     0,     
0,     0,     0,     0,     0,     0,     0,     0,     0,     0,0,0; 
     0,     0, 8*l^2,     0,  -6*l,     0, 2*l^2,     0,     0,     0,     
0,     0,     0,     0,     0,     0,     0,     0,     0,     0,0,0; 
     0,     0,     0, 8*l^2,     0,  -6*l,     0, 2*l^2,     0,     0,     
0,     0,     0,     0,     0,     0,     0,     0,     0,     0,0,0; 
   -12,     0,  -6*l,     0,    24,     0,     0,     0,   -12,     0,   
6*l,     0,     0,     0,     0,     0,     0,     0,     0,     0,0,0; 
     0,   -12,     0,  -6*l,     0,    24,     0,     0,     0,   -12,     
0,   6*l,     0,     0,     0,     0,     0,     0,     0,     0,0,0; 
   6*l,     0, 2*l^2,     0,     0,     0, 8*l^2,     0,  -6*l,     0, 
2*l^2,     0,     0,     0,     0,     0,     0,     0,     0,     0,0,0; 
     0,   6*l,     0, 2*l^2,     0,     0,     0, 8*l^2,     0,  -6*l,     
0, 2*l^2,     0,     0,     0,     0,     0,     0,     0,     0,0,0; 
     0,     0,     0,     0,   -12,     0,  -6*l,     0,    24,     0,     
0,     0,   -12,     0,   6*l,     0,     0,     0,     0,     0,0,0; 
     0,     0,     0,     0,     0,   -12,     0,  -6*l,     0,    24,     
0,     0,     0,   -12,     0,   6*l,     0,     0,     0,     0,0,0; 
     0,     0,     0,     0,   6*l,     0, 2*l^2,     0,     0,     0, 
8*l^2,     0,  -6*l,     0, 2*l^2,     0,     0,     0,     0,     0,0,0; 
     0,     0,     0,     0,     0,   6*l,     0, 2*l^2,     0,     0,     
0, 8*l^2,     0,  -6*l,     0, 2*l^2,     0,     0,     0,     0,0,0; 
     0,     0,     0,     0,     0,     0,     0,     0,   -12,     0,  -
6*l,     0,    24,     0,     0,     0,   -12,     0,   6*l,     0,0,0; 
     0,     0,     0,     0,     0,     0,     0,     0,     0,   -12,     
0,  -6*l,     0,    24,     0,     0,     0,   -12,     0,   6*l,0,0; 
     0,     0,     0,     0,     0,     0,     0,     0,   6*l,     0, 
2*l^2,     0,     0,     0, 8*l^2,     0,  -6*l,     0, 2*l^2,     0,0,0; 
     0,     0,     0,     0,     0,     0,     0,     0,     0,   6*l,     
0, 2*l^2,     0,     0,     0, 8*l^2,     0,  -6*l,     0, 2*l^2,0,0; 
     0,     0,     0,     0,     0,     0,     0,     0,     0,     0,     
0,     0,   -12,     0,  -6*l,     0,    12,     0,  -6*l,     0, ( 
20*l^2*(Pz*cos(row0)+mp*g*sin(row0)*sin(alph0)-
Py*sin(row0)*sin(alph0)))/(Ee*I),   ( 
20*l^2*(Px*cos(row0)+mp*g*sin(row0)*cos(alph0)-
Py*sin(row0)*cos(alph0)))/(Ee*I) ; 
     0,     0,     0,     0,     0,     0,     0,     0,     0,     0,     
0,     0,     0,   -12,     0,  -6*l,     0,    12,     0,  -6*l,(  
20*l^2*( -mp*g*cos(alph0)+Py*cos(alph0)))/(Ee*I),   ( 20*l^2*( 
mp*g*sin(alph0)-Py*sin(alph0)))/(Ee*I); 
     0,     0,     0,     0,     0,     0,     0,     0,     0,     0,     
0,     0,   6*l,     0, 2*l^2,     0,  -6*l,     0, 4*l^2,     0,0,0; 
     0,     0,     0,     0,     0,     0,     0,     0,     0,     0,     
0,     0,     0,   6*l,     0, 2*l^2,     0,  -6*l,     0, 4*l^2,0,0 
     0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,(l^3*(mp*g*L2-Py*L2))/(Ee*I),   
0 
    0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,             (l^3*(mp*g*L2-
Py*L2))/(Ee*I) ]; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% 
%-----------------disturbunce displacement[x0A;y0A;z0A;dleta] 
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B1_distur_disp=(-l/20)*[0,0,0,-20*me*g*sin(row0); 
    0,0,0,0; 
    0,0,0,0; 
    0,0,0,0; 
    0,0,0,-20*me*g*sin(row0); 
    0,0,0,0; 
    0,0,0,0; 
    0,0,0,0; 
    0,0,0,-20*me*g*sin(row0); 
    0,0,0,0; 
    0,0,0,0; 
    0,0,0,0; 
    0,0,0,-20*me*g*sin(row0); 
    0,0,0,0; 
    0,0,0,0; 
    0,0,0,0; 
    0,0,0,(-20/l)*(Py*sin(row0-mp*g*sin(row0))); 
    0,0,0,0; 
    0,0,0,0; 
    0,0,0,0; 
    0,0,0,0; 
    0,0,0,0];%(-20/l)*(-Py*sin(row0+mp*g*sin(row0))) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%----------Acceleration of disturbances [x0A;y0A;z0A;dleta] 
B2distur_acce =(-l/20)*[ -20*me*cos(alph0)*sin(row0),  20*me*cos(row0), -
20*me*sin(alph0)*cos(row0),20*l*me; 
     -20*me*sin(row0),0,20*me*cos(alph0),0; 
      0,0,0,(4*me*l^2)/3; 
      0,0,0,0; 
     -20*me*cos(alph0)*sin(row0), 20*me*cos(row0),-
20*me*sin(alph0)*cos(row0),40*l*me;... 
     -20*me*sin(row0),0,20*me*cos(alph0),0; 
      0,0,0,(4*me*l^2)/3; 
      0,0,0,0; 
     -20*me*cos(alph0)*sin(row0), 20*me*cos(row0),-
20*me*sin(alph0)*cos(row0),60*l*me; 
     -20*me*sin(row0),0,20*me*cos(alph0),0; 
      0,0,0,(4*me*l^2)/3; 
      0,0,0,0; 
     -20*me*cos(alph0)*sin(row0), 20*me*cos(row0),-
20*me*sin(alph0)*cos(row0),80*l*me; 
     -20*me*sin(row0),0,20*me*cos(alph0),0; 
      0,0,0,(4*me*l^2)/3; 
      0,0,0,0; 
      0,(-20*mp*cos(row0))/l,0,((-20*L1*mp*cos(row0)*cos(row0))/l)+((20*(-
25/3*l^3*g*cos(row0)*(7*l*me+5*mp)/Ee/I)*mp*sin(row0)*cos(row0))/l); 
      0,0,0,0; 
      0,0,0,0; 
      0,0,0,0; 
      0,0,(20*L2*mp)/l,(20*L2*mp*((-L1*sin(alph0)*sin(row0))-((-
25/3*l^3*g*cos(row0)*(7*l*me+5*mp)/Ee/I)*sin(alph0)*cos(row0))))/l; 
     (20*L2*mp)/l,0,0,(20*L2*mp*((-L1*cos(alph0)*sin(row0))-((-
25/3*l^3*g*cos(row0)*(7*l*me+5*mp)/Ee/I)*cos(alph0)*cos(row0))))/l]; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 %-------------------input dispalcement [row;alpha;L2] 
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B3_input_disp=(-l/20)*[-20*me*g*sin(row0),0,0; 
    0,0,0; 
    0,0,0; 
    0,0,0; 
    -20*me*g*sin(row0),0,0; 
    0,0,0; 
    0,0,0; 
    0,0,0; 
    -20*me*g*sin(row0),0,0; 
    0,0,0; 
    0,0,0; 
    0,0,0; 
    -20*me*g*sin(row0),0,0; 
    0,0,0; 
    0,0,0; 
    0,0,0; 
    (-20/l)*(Py*sin(row0-mp*g*sin(row0))),0,0; 
    0,0,0; 
    0,0,0; 
    0,0,0; 
    0,0,(-20*Pz)/l; 
    0,0,(-20*Pz)/l];%(-20/l)*(-Py*sin(row0+mp*g*sin(row0))) 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%% 
     %----------------------Acceleration of input variables[row;alpha;L2] 
B4_input_acc= (-l/20)*[20*l*me,0,0; 
     0,me*l*(10*cos(row0)+10),0; 
     (4*me*l^2)/3,0,0; 
     0,(l^2*me*(5*cos(row0)-1 ))/3,0; 
     40*l*me,0,0; 
     0,me*l*(30*cos(row0)+10),0; 
    (4*me*l^2)/3,0,0; 
     0,(l^2*me*(5*cos(row0)-1 ))/3,0; 
     60*l*me,0,0; 
     0,me*l*(50*cos(row0)+10),0; 
     (4*me*l^2)/3,0,0; 
     0,(l^2*me*(5*cos(row0)-1 ))/3,0; 
     80*l*me,0,0; 
     0,me*l*(70*cos(row0)+10),0; 
    (4*me*l^2)/3,0,0; 
     0,(l^2*me*(5*cos(row0)-1 ))/3,0; 
    ((-20*L1*mp*cos(row0)*cos(row0))/l)+((20*(-
25/3*l^3*g*cos(row0)*(7*l*me+5*mp)/Ee/I)*mp*sin(row0)*cos(row0))/l),0,(-
20*mp*cos(row0))/l; 
     0,0,0; 
     0,0,0; 
     0,0,0; 
    (20*L2*mp*((-L1*sin(alph0)*sin(row0))-((-
25/3*l^3*g*cos(row0)*(7*l*me+5*mp)/Ee/I)*sin(alph0)*cos(row0))))/l,(20*L2*m
p*(( L1*cos(alph0)*cos(row0))-((-
25/3*l^3*g*cos(row0)*(7*l*me+5*mp)/Ee/I)*cos(alph0)*sin(row0))))/l,0; 
    (20*L2*mp*((-L1*cos(alph0)*sin(row0))-((-
25/3*l^3*g*cos(row0)*(7*l*me+5*mp)/Ee/I)*cos(alph0)*cos(row0))))/l,(20*L2*m
p*((-L1*sin(alph0)*cos(row0))-((-
25/3*l^3*g*cos(row0)*(7*l*me+5*mp)/Ee/I)*sin(alph0)*sin(row0))))/l,0]; 
   
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 
%--------------------wind force [px;py;pz] 
B5wind=(-l/20)*[0,0,0; 
    0,0,0; 
    0,0,0; 
    0,0,0; 
    0,0,0; 
    0,0,0; 
    0,0,0; 
    0,0,0; 
    0,0,0; 
    0,0,0; 
    0,0,0; 
    0,0,0; 
    0,0,0; 
    0,0,0; 
    0,0,0; 
    0,0,0; 
    0,(-20*cos(row0))/l,0; 
    0,0,0; 
    0,0,0; 
    0,0,0; 
    0,0,(-20*L2)/l; 
    (-20*L2)/l,0,0]; 
     
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%% 
  % deriving the state space model  
  c1=zeros(4,22); 
   c1(1,17)=1; %to measure w6 
   c1(2,18)=1;  %to measure v6 
   c1(3,21)=1;  %to measure theta 
   c1(4,22)=1;  %to measure opsi 
   u=[w2; v2; gama2; phi2; w3; v3; gama3 ;phi3; w4 ;v4; gama4; phi4;... 
     w5 ;v5 ;gama5; phi5; w6 ;v6; gama6; phi6;theta;opsi;zeros(22,1)];      
  A=[zeros(22,22), eye(22);-
ktotal*inv(mtotal),zeros(22,22)];%%%%%%%%%%%%%%%%%%%%%%%%%% 
  size(A); 
  B=[zeros(22,3);(-ktotal*inv(mtotal)*B4_input_acc)+B3_input_disp]; 
  size(B); 
  C=[c1*inv(mtotal)   zeros(4,22)]; 
  size(C); 
  D=[c1*inv(mtotal)*B4_input_acc]; 
  F=[c1*inv(mtotal)*B2distur_acce]; 
    size(F); 
  N=[zeros(22,3);B5wind]; 
  E=[zeros(22,4);(-ktotal*inv(mtotal)*B2distur_acce)+B1_distur_disp]; 
  size(E); 
%  sys=ss(A,B,C,D) 
% %q0=[(-1/3*l^3*g*cos(row0)*(13*l*me+7*mp)/Ee/I); 
%                                          0; 
%   (-1/2*l^2*g*cos(row0)*(16*l*me+9*mp)/Ee/I); 
%                                          0; 
%  -1/6*l^3*g*cos(row0)*(89*l*me+52*mp)/Ee/I; 
%                                          0; 
%  -1/2*l^2*g*cos(row0)*(25*l*me+16*mp)/Ee/I; 
%                                          0; 
%  -3/2*l^3*g*cos(row0)*(19*l*me+12*mp)/Ee/I; 
%                                          0; 
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%  -1/2*l^2*g*cos(row0)*(29*l*me+21*mp)/Ee/I; 
%                                          0; 
%  -2/3*l^3*g*cos(row0)*(65*l*me+44*mp)/Ee/I; 
%                                          0; 
%      -3*l^2*g*cos(row0)*(5*l*me+4*mp)/Ee/I; 
%                                          0; 
%   -25/3*l^3*g*cos(row0)*(7*l*me+5*mp)/Ee/I; 
%                                          0; 
%    -5/2*l^2*g*cos(row0)*(6*l*me+5*mp)/Ee/I; 
%                                          0; 
%                                          0; 
%                                          pi/4]; 
  
 q0 =[0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0; 0;0;0;0;pi/5;pi/5]; 
 qdot0=zeros(22,1); 
% Q=[-inv(mtotal)*ktotal]; 
z0=[mtotal  zeros(22,22);zeros(22,22) mtotal]*[q0; qdot0]-[B4_input_acc  
zeros(22,3);zeros(22,3) B4_input_acc]*[0 ;0;0;0;0;0]... 
    -[B2distur_acce zeros(22,4);zeros(22,4) 
B2distur_acce]*[0;0;0;0;0;0;0;0]; 
%s=C*z0%[mtotal  zeros(22,22);zeros(22,22) mtotal] 
%C0=[inv(mtotal) 0*mtotal]; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%% 
%cheking controllability by using transformation method 
%[P,J]=jordan(A); 
%B_slash=inv(P)*B 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%% 
size(B); 
  
  
  
Q=.00001*eye(44,44); 
    Q(17,17)=.0001; 
  Q(18,18)= .00001; 
  Q(21,21)=.00001; 
  Q(22,22)= .0001 ; 
     
    
R=1000*eye(3,3); 
 R(1,1)=500 ; 
 R(2,2)= 500  ; 
R(3,3)= 500 ; 
Kf=lqr(A,B,Q,R); 
Kfsize=size(Kf); 
Af=A-(B*Kf); 
eigaf=eig(Af); 
Cf=C-(D*Kf); 
Mj=eye(47,44); 
  
file='KfattwodimR1.mat'; 
Kf0=Kf; 
save(file,'Kf0'); 
load 'KfattwodimR1.mat'; 
Af=A-(B*Kf0 );  
eigcontroller= sort((eig(Af)),'descend')   
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%===========================================Design observer 
  
Ae=[A N;zeros(3,47)]; 
sizeAe=size(Ae); 
Be=[B;zeros(3,3)]; 
sizeBe=size(Be); 
Ee=[E;zeros(3,4)]; 
sizeEe=size(Ee); 
Ce=[C zeros(4,3)]; 
sizeCe=size(Ce); 
Qe=10000*eye(47); 
Qe(45,45)=1e15; 
Qe(46,46)=1e15; 
Qe(47,47)=1e15; 
Re=.0001*eye(4,4); 
le=lqr(Ae',Ce',Qe,Re); 
Le=le'; 
sizeLe=size(Le); 
eigA=eig(A); 
He=zeros(47,3); 
 He(45,1)=1;He(46,2)=1;He(47,3)=1; 
  
  file='LeatowdimR1.mat'; 
Le0=Le; 
save(file,'Le0'); 
load 'LeatowdimR1.mat'; 
eigobserver=sort(eig(Ae-Le0*Ce),'descend'); 
    
for i=1:size(eigcontroller) 
   if  eigobserver(i,1)  <  eigcontroller (i,1)  
       x(1,i)=1; 
   else 
       x(1,i)=0; 
   end 
end 
 x   
  
   
Matlab code to calculate the zero operating point 
 
 
syms me beta g E l I mp   
syms w2 v2 gama2 phi2 w3 v3 gama3 phi3 w4 v4 gama4 phi4 
syms w5 v5 gama5 phi5 w6 v6 gama6 phi6 
F0=(-
l/20)*[20*me*g*cos(beta);0;0;0;20*me*g*cos(beta);0;0;0;20*me*g*cos(beta);..
. 
    0;0;0;20*me*g*cos(beta);0;0;0; (20/l)*mp*g*cos(beta) ;... 
    0;0;0]; 
ktotalinvers=(E*I/l^3)*[    24,     0,     0,     0,   -12,     0,   6*l,     
0,     0,     0,     0,     0,     0,     0,     0,     0,     0,     0,     
0,     0; 
     0,    24,     0,     0,     0,   -12,     0,   6*l,     0,     0,     
0,     0,     0,     0,     0,     0,     0,     0,     0,     0; 
     0,     0, 8*l^2,     0,  -6*l,     0, 2*l^2,     0,     0,     0,     
0,     0,     0,     0,     0,     0,     0,     0,     0,     0; 
     0,     0,     0, 8*l^2,     0,  -6*l,     0, 2*l^2,     0,     0,     
0,     0,     0,     0,     0,     0,     0,     0,     0,     0; 
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   -12,     0,  -6*l,     0,    24,     0,     0,     0,   -12,     0,   
6*l,     0,     0,     0,     0,     0,     0,     0,     0,     0; 
     0,   -12,     0,  -6*l,     0,    24,     0,     0,     0,   -12,     
0,   6*l,     0,     0,     0,     0,     0,     0,     0,     0; 
   6*l,     0, 2*l^2,     0,     0,     0, 8*l^2,     0,  -6*l,     0, 
2*l^2,     0,     0,     0,     0,     0,     0,     0,     0,     0; 
     0,   6*l,     0, 2*l^2,     0,     0,     0, 8*l^2,     0,  -6*l,     
0, 2*l^2,     0,     0,     0,     0,     0,     0,     0,     0; 
     0,     0,     0,     0,   -12,     0,  -6*l,     0,    24,     0,     
0,     0,   -12,     0,   6*l,     0,     0,     0,     0,     0; 
     0,     0,     0,     0,     0,   -12,     0,  -6*l,     0,    24,     
0,     0,     0,   -12,     0,   6*l,     0,     0,     0,     0; 
     0,     0,     0,     0,   6*l,     0, 2*l^2,     0,     0,     0, 
8*l^2,     0,  -6*l,     0, 2*l^2,     0,     0,     0,     0,     0; 
     0,     0,     0,     0,     0,   6*l,     0, 2*l^2,     0,     0,     
0, 8*l^2,     0,  -6*l,     0, 2*l^2,     0,     0,     0,     0; 
     0,     0,     0,     0,     0,     0,     0,     0,   -12,     0,  -
6*l,     0,    24,     0,     0,     0,   -12,     0,   6*l,     0; 
     0,     0,     0,     0,     0,     0,     0,     0,     0,   -12,     
0,  -6*l,     0,    24,     0,     0,     0,   -12,     0,   6*l; 
     0,     0,     0,     0,     0,     0,     0,     0,   6*l,     0, 
2*l^2,     0,     0,     0, 8*l^2,     0,  -6*l,     0, 2*l^2,     0; 
     0,     0,     0,     0,     0,     0,     0,     0,     0,   6*l,     
0, 2*l^2,     0,     0,     0, 8*l^2,     0,  -6*l,     0, 2*l^2; 
     0,     0,     0,     0,     0,     0,     0,     0,     0,     0,     
0,     0,   -12,     0,  -6*l,     0,    12,     0,  -6*l,     0; 
     0,     0,     0,     0,     0,     0,     0,     0,     0,     0,     
0,     0,     0,   -12,     0,  -6*l,     0,    12,     0,  -6*l; 
     0,     0,     0,     0,     0,     0,     0,     0,     0,     0,     
0,     0,   6*l,     0, 2*l^2,     0,  -6*l,     0, 4*l^2,     0; 
     0,     0,     0,     0,     0,     0,     0,     0,     0,     0,     
0,     0,     0,   6*l,     0, 2*l^2,     0,  -6*l,     0, 4*l^2]; 
 v00=inv(ktotalinvers )*F0; 
  
 v0=simple(v00  )%/((E*I)/(l^3))) 
 u=[w2; v2; gama2; phi2; w3; v3; gama3 ;phi3; w4 ;v4; gama4; phi4;... 
     w5 ;v5 ;gama5; phi5; w6 ;v6; gama6; phi6]; 
 ktotal_andu=simple(ktotalinvers*v0) 
 
 
Matlab code to calculate the tension and the position of the tip of the crane by axis 
transformation method 
%find x6 y6 z6 of point B and the tension T 
syms alpha beta w6 v6 L1  
Rx1_0=[cos(alpha) 0 -sin(alpha);0 1 0;sin(alpha) 0 cos(alpha)]; 
    Rx2_x1=[cos(beta) -sin(beta) 0;sin(beta) cos(beta) 0;0 0 1]; 
    Rx2_0=Rx1_0*Rx2_x1 
    position_ofB=[L1;w6;v6];%relative to x2y2z2 plane 
    posit_B=  (Rx1_0*Rx2_x1)*position_ofB  %relative to x0y0z0 
     
    syms th ops T 
     
    Tx=T*cos(th)*sin(ops); 
    Ty=-T*cos(th)*cos(ops); 
    Tz=T*sin(th); 
    transRx2_0=[cos(alpha)*cos(beta), sin(beta),sin(alpha)*cos(beta);... 
                   -cos(alpha)*sin(beta), cos(beta),-
sin(alpha)*sin(beta);... 
                       -sin(alpha), 0 , cos(alpha)]; 
                   tension=transRx2_0 *[Tx;Ty;Tz] %relative to x2y2z2 
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Appendix B: Simulation Diagram 
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Appendix C: Derivation of the payload equation of 
motion using Lagrange. 
 
The physical coordinates for the payload are , , , the independent generalized 

coordinates which describe the full motion of the payload are the length of the hoisting 

cable , the in-plane angle  and the out-of-plane angle  . 

 
The physical coordinates can be written as a function of the generalized coordinates as 

follows: 

 
, ,  
, ,  
, ,

C1 

 
We can derive the virtual displacement(the change of the physical coordinates while 

the time is held constant)  in the direction of the physical coordinates with respect to 

generalized coordinates using the following definition of the virtual displacement : 

  
 

  C2 

 
where: 

: is the virtual displacement of the physical coordinates ( 1,2, … … , ), where  

is the number of physical coordinates . 

 : is the generalized coordinates 1,2, … … … , , where m is number of 

generalized coordinates. 

: the virtual displacement of the generalized coordinates. 

 

As follows: 
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C3 

 
Also we can write the applied wind forces , ,  in the direction of the physical 

coordinates in terms of the generalized coordinates , , , by using the principle of 

the virtual work which states that: the work performed by the applied forces through 

infinitesimal virtual displacement compatible with the system coordinates is zero in 

mathematical notation,  

 ∑ . =0 C4 
 
By using Eq. C4 the virtual work performed by the applied wind forces will be given 

as: 

  
  . . . 0 C5 

 
Substitute Eq.C3 into Eq.C5 
 

   . .  .  

          .  .  . + . . .    =0 
C6 

 
Then the virtual work done in the direction of the virtual generalized coordinate  is: 
 

2  
  .

2
.

2
.

2
2 0 C7 

 
and in the direction of generalized coordinate  is: 
 

   .
2

.
2

.
2

0 C8 

 
and in the direction of generalized coordinate  is: 
 

 
  .

2
.

2
.

2
0 C9 
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But the virtual work can be written in terms of generalized forces as: 
 

 
1

 C10 

 
where: 
 

: the generalized forces 1,2, … … . . , , where m the number of generalized coordinates. 

: the virtual displacement of the generalized coordinates. 

 

Then we can conclude from Eq. C7, Eq. C8 and Eq.C9 that the generalized forces in the 

direction of the generalized coordinates , ,   can be expressed as follows 

respectively: 

 2   .
2

.
2

.
2

 C11 

  .
2

.
2

.
2

 
C12 

  .
2

.
2

.
2

 
C13 

 

Now by applying the Lagrange  for neoconservative forces which can be expressed as: 

 

   C14 

 

 

 

Then the equations of motion of the payload are represented by equations 2.13, 2.14 

and 2.15.   
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والذي يعتمد في )  Region finder(إحداثيات منطقة التشغيل التي يحددها برنامج إيجاد المنطقة 6- 

وزاوية رفع وتنزيل الحمل وزاوية دوران الذراع حول المحور  ،حبل الحملعمله على قيمة طول 

وعندما تكون نقطة التشغيل ليست عند أحد زوايا متوازي المستطيلات يقوم برنامج إيجاد  العمودي،

 Linear(المنطقة باستخدام التقريب حسب مصفوفات التحكم والمراقبة عند زوايا متوازي المستطيلات 

interpolation  (مصفوفة التحكم ومصفوفة المراقبة المناسبة، وبهذه الطريقة يتم ضمان عمل  لحساب

 .المراقبة بسلاسة واستقرار

تم محاكاة التمثيل الرياضي الخطي للرافعة بعد تصميم المراقب والمتحكم فوجد أن المراقب استطاع 7- 

م حالات النظام غير وبشكل فعال حساب قيم القوى الخارجية المؤثرة غير المقاسة وكذلك حساب قي

المقاسة وتزويد المتحكم بها، حيث قام المتحكم وبشكل فعال باستخدامها وكذلك استخدام القيم المقاسة 

لحالات النظام والقيم المقاسة لزوايا الحمل لإخماد الاهتزازات والتقليل من تأثير القوى الخارجية على 

 .الرافعة
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يستخدم القيم المحسوبة من المراقب ويستخدم كذلك القيم المقاسة لحركة العارضة المرنة الداخلية المتحكم 

والخارجية بالنسبة إلى المستوى الديكارتي، كما يستخدم القيم المقاسة لزاويتي الحمل، لإخماد الاهتزازات 

استقرارية وعمل المتحكم بصورة  ).الذراع المرنة والحمل(والتقليل من تأثير القوى الخارجية على الرافعة

  .فعالة بتغير ظروف التشغيل للرافعة قد ضمنت لكافة مناطق تشغيل الرافعة

نتائج المحاكاة للرافعة بعد تصميم المتحكم والمراقب أظهرت أن المراقب قد استطاع حساب حالات النظام 

  .تقليل تأثر القوى الخارجية بشكل فعالوالقوى الخارجية غير المقاسة كما استطاع المتحكم خمد الاهتزازات و

  :النتائج

لتقريب التمثيل  Taylorتم إيجاد التمثيل الرياضي غير الخطي للرافعة كاملة ثم استخدمت متسلسلة    -1

 . حول نقطة التشغيل الحالية غير الخطي إلى تمثيل رياضي خطي الرياضي

القوى الخارجية التي اعتمدت في هذه الدراسة تم إجراء محاكاة للتمثيل الرياضي الخطي لإيجاد تأثير  -2

، وقد أظهرت النتائج أن الحمل ) initial conditions(وكذلك تأثير مختلف الشروط البدائية 

والذراع المرن تتعرض إلى الاهتزاز إلى داخل وخارج المحور الديكارتي تحت تأثير أي من القوى 

ز سوءا إذا كانت قيمة تردد القوى الخارجية المؤثرة ويزداد الاهتزا. الخارجية أو الشروط البدائية

للرافعة عند )   fundamental eigenvalue(على الرافعة قريبة من قيمة اهتزاز القطب الرئيسي 

 .نقطة التشغيل الحالية

وإيجاد مصفوفات النظام التي )  state space model(تم إيجاد التمثيل الفراغي لحالة النظام  -3

 .م نظام المراقبة والتحكم بالرافعةاستخدمت لتصمي

مناطق عمل، كل منطقة عبارة عن متوازي مستطيلات وقد  108تم تقسيم مناطق عمل الرافعة الى  -4

عند كل زاوية من زوايا متوازي المستطيلات ومصفوفات المراقب  تم حساب مصفوفات التحكم 

 .الذي يمثل منطقة تشغيل للرافعة

 variable-extended(المراقبباستخدام مصفوفات النظام تم تصميم مراقب ممتد متغير مصفوفة  -5

observer ( مصفوفة التحكم  تم تصميم متحكم متغير كما     )variable gain controller (  

حيث يتم اختيار مصفوفات المراقبة ومصفوفات التحكم اللازمة للمراقب والمتحكم عند نقطة تشغيل 

   .معينة حسب نقطة التشغيل الحالية
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Modeling & Control of an Elastic Ship-Mounted Crane  
  :ملخص

موضوع هذه الرسالة يتمحور حول عمل تمثيل رياضي والتحكم في ذراع مرن، والتطبيق الذي تم اختياره  

ذات مقطع دائري، وقد تم  للدراسة هو رافعة حاويات تثبت على سفن التفريغ، ويتكون التصميم من ذراع مرن

، وزاوية رفع وتنزيل الحمل قد استخدم كل من طول حبل و إيجاد التمثيل الرياضي للذراع المرن والحمل،

،للتحكم )  slew angle( ، بالإضافة إلى زاوية دوران الذراع حول المحور العمودي)   luff angle(الذراع 

القوى  .في اهتزاز الذراع المرن والحركة البندولية للحمل تحت تأثير القوى الخارجية التي تؤثر عليهما

بالإضافة إلى قوى الرياح التي تؤثر على قوى حركة الأمواج البحرية ، : الخارجية المؤثرة على الهيكل هي

 .حركة بندوليه إلى داخل والى خارج المستوى الديكارتييتحرك  الحمل واعتبر أن .الحمل مباشرة

استخدمت طريقة العناصر المحدودة  وقد. تم إيجاد التمثيل الرياضي غير الخطي لكل من الحمل والذراع المرن

لتقريب التمثيل الرياضي الحقيقي إلى تمثيل  Taylorوتم استخدام متسلسلة . في إيجاد التمثيل الرياضي للذراع

وزاوية رفع   ،رياضي خطي حول نقطة التشغيل الحالية، والتي تتغير مع تغير كل من طول حبل الحمل

وهذا التقريب أدى إلى إيجاد تمثيل رياضي . ول المحور العمودي وتنزيل الحمل وزاوية دوران الذراع ح

  .خطي للذراع والحمل يعتمد على الزمن

والذراع المرن بحركة بندولية إلى داخل  نتائج المحاكاة للتمثيل الرياضي الخطي، قد أظهرت اهتزاز الحمولة

تحكم في الهيكل، حيث تم حساب واستخدم التمثيل الرياضي لتصميم نظام ال. وخارج المستوى الديكارتي

من طول مصفوفات النظام للتمثيل الرياضي الخطي عند نقطة التشغيل اللحظية الحالية، التي تعتمد على كل 

وباستخدام هذه  .وزاوية رفع  وتنزيل الذراع وزاوية دوران الذراع حول المحور العمودي ،حبل الحمل

) variable-gain extended observer(ات المراقبة  المصفوفات تم تصميم مراقب ممتد متغير مصفوف

لحساب قيم تقريبية للقوى الخارجية وحالات النظام غير المقاسة، كما تم تصميم متحكم متغير مصفوفات التحكم  

)variable-gain controller  (للتحكم في الرافعة في جميع ظروف عملها)لخمد الاهتزازات ) نقاط التشغيل

  .الناتجة من تأثير القوى الخارجية

، ولضمان سلاسة عمل المتحكم والمراقب والانتقال بسلاسة بين 108وقد تم تقسيم مناطق عمل الرافعة إلى 

وزاوية رفع  ،طول حبل الحمل تشغيل حسب هذه المناطق، تم تصميم برنامج إيجاد المنطقة لإيجاد منطقة ال

، الذي بدوره يقوم بتغذية المراقب والمتحكم الحمل وزاوية دوران الذراع حول المحور العمودي وتنزيل

  .بالمصفوفات اللازمة المحسوبة مسبقا حسب منطقة التشغيل
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