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length of the elastic boom , length of the payload .

length of the upper cable and length of the payload cable

angle of the boom with the horizontal and roll angle

the luff angle of the elastic boom.

the slew angle of the elastic boom with respect to the vertical axis.
elastic displacement and elastic rotation at node i in in-plane

clastic displacement and elastic rotation at node i in out-of-plane

the displacements of the ship due sea motion.

wind forces acting directly on the payload.

the in-and-out-of-plane angles of the payload.

tension in L, the hosting cable

actual and estimated wind force

mass of the payload.

mass density, elastic modulus, cross section moment of area of the elastic
boom

local coordinate in the finite element

mass and stiffness matrices

input matrices

disturbance matrices

wind force

displacement vector, state vector, and estimated state vector

input, output, and measurement vectors

system and extended system matrices

input and extended input matrices

disturbance and extended disturbance matrices corresponding to rolling
disturbance matrix corresponding to the wind force acting on the payload
output and extended output matrices

input and disturbance feed forward matrices.

observer gain components and extended observer gain matrix

i eigenvalue

error vector and input matrix for the error equation of the observer
weight matrix of the states and the estimated states for the optimal design
weight matrix of the inputs and the measurements for the optimal design
solution of Ricatti equation

input vector and gain of the optimal controller
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Abstract

Modeling and control of 3D-elastic ship-mounted cranes with a circular cross section
elastic boom had been developed. The developed model contains three kinematic
inputs (the luff and slew angles of the boom together with the length of the payload
hosting cable) to control the elastic vibrations of the boom and the pendulation of the
payload. Two kinds of disturbances are considered; the sea waves which act on the
ship and the wind force which act directly on the payload. The developed nonlinear
model of the crane is expanded about the current operating point which varies with the
luff and slew angles and the length of the payload cable using Taylor series. The result

is a linear time-variant model for the crane under consideration.

Simulation results for the linearized model show that the disturbances considered
cause the payload to oscillate in the in-plane and in the out-of-plane . Consequently,
the linear model is used to design the control system of the crane. The coefficient
matrices of this linear model are calculated at the current (instantaneous) operating
point, which varies with the luff and slew angles and the length of the payload cable,
therefore, a variable-model problem is created and accordingly a variable-gain
observer and a variable-gain controller are designed to cover the operation of the crane

for all possible operating points in the working space of the crane.

The switching between these gains takes place automatically according to the output of
a region finder, which uses the measurements of the luff and slew angles and the
length of the payload cable to detect the current operating region. Extended-observer
1s used to estimate the states and unknown disturbances; this guarantees that the
estimated states converge to their true values even though a nonzero disturbance force
acts on the payload. The controller uses the estimated states and the measured
pendulation distances of the elastic boom in both in-plane and out-of-plane, and the
measured in-plane and out-of-plane pendulation angles of the payload cable to create
the required damping and to reduce the effect of the disturbances on the ship. Stability
and performance robustness of the system are ensured for the total working space and

X



also for the expected range of the payload mass. Simulation results show that the
observer can estimate the states and the disturbances very well and the controller can

reduce the payload pendulations significantly.
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1 Introduction

1.1 Motivation

The crane can be considered as one of the most important tools used to transfer
loads and cargo from one ship to another. As shown in Fig. 1.1 cranes have very strong
structures in order to be able to lift heavy objects on their working space.

When cargo ships can not dock directly at port, ship-mounted cranes are used to
lift and transfer cargo from these large ships to lighter port-going vessels. During this
process, any sea motions can result in wave induced crane pendulations making the
operation of the ship-mounted cranes unsafe especially whenever the waves are
sufficiently high to produce large displacements of the payload.

At ports where such conditions (sea motions) exist for extended periods of time,
this constraint on the flow of cargo shipping results in significant delays and cost
overruns. Several control mechanisms have been proposed to suppress unsafe

pendulations and enable the operation of ship-mounted cranes at high seas.

Figure 1.1: Picture of a ship-mounted crane at sea[6].

Boom cranes are modeled as spherical pendulum. It is found that when a
lightly damped spherical pendulum is subjected to a simple harmonic planar

displacement at the suspension point, nonplanar motions of the pendulum could be
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excited due to the nonlinear interaction between in-plane and out-of-plane modes. Chin
and Nayfeh (1996, 2001) [1] studied ship-mounted crane dynamics in two cases of
harmonic base excitations at the boom tip: the case of primary resonance and the case
of principal parametric resonance. They found out that, while the parametric excitation
exhibits principal resonance in neighborhood of twice the natural frequency of the
system, the response is always periodic and planar with arbitrary plane of oscillations.
On the other hand, direct excitations produce complex dynamics when the excitation
frequency approaches the natural frequency of the system (primary resonance). They
also found out that a strictly planar excitation could produce in-plane and out-of-plane
pendulations and that response may exhibit sudden jumps, modulation of the response
amplitudes and phases and chaos.

Yuan and Ott (1997) [2] proposed a rigging to ship-mounted cranes, which is
referred to as the “Maryland Rigging” system . A passive control effort is applied to
the planar payload pendulations by applying a brake system to the upper cable as it
passes over the pulley. They derived a planar model of this rigging and utilized it to
investigate the response of the system to periodic and chaotic roll motions. Their
simulation results showed that the payload response builds up significantly when the
dominant frequency of the chaotic motion approaches the natural frequency of the
lower pendulum. The pulley was then used as a brake to apply a constant and
continuous dry friction. Simulation results showed that a constant friction force up to
10% of the payload weight can reduce planar payload pendulations significantly even
in the neighborhood of the natural frequency of the system.

Kimiaghalam (1999) [3] proposed a fuzzy logic control approach to dampen the
pendulations in a Maryland rigged crane by changing the length of the upper cable to
eliminate and dampen payload pendulations; however, its performance is inferior to that of the
passive controller.

Dadone and Landingham (1999) [4] used a fuzzy logic interference engine to
stabilize the in-plane motions of the payload by determining the level of dry friction in
the pulley based on the positions and velocities of the pulley and payload.
Simultaneously, the pulley velocity and acceleration are used to feedback changes in

the pulley cable to eliminate vertical oscillations of the pulley. Simulation results



showed fast damping of the payload motions, however the friction level (control
effort) in the pulley was much higher than that employed by Yuan (1997). Further,
although changes in the length of the pulley cable absorbed the pulley vertical
oscillations, they introduced horizontal oscillations in the positions of both the pulley
and payload.

Wen and Kimiaghalam (1999) proposed a combined feed forward and feedback
control strategy to stabilize planar pendulations in crane equipped with the Maryland
rigging. The governing planar equations of motion are linearized and the control
strategy is based on changing the length of the upper cable to cancel the effects of the
base excitation due to ship roll and to add more damping to the system. Simulation
results showed that the controller can reduce the payload pendulations to less than 3°

for small roll motions.

Rigid part (BC)

Lower suspension
pomnt

Payload

Figure 1.2: Al-Sweiti crane configuration with Maryland Rigging [6].



Kimiaghalam (2000) [5], proposed another control system to reduce the
excursions of the equilibrium point of the pulley due to ship rolling by keeping the
position of the pulley directed above the payload. Simulation results showed that the
proposed control strategy is effective and fast in damping payload pendulations.
However, the control system assume full authority over the lengths of both segments
of the upper cable, and hence the pulley position. This assumption violates the pulley’s
equilibrium equation.

Al-Sweiti (2006) [6,7] considered the Maryland Rigging crane with elastic
boom system as shown in Fig. 1.2. The boom luff angle, the length of the upper cable,
and the position of its lower suspension point were employed as inputs to control the
planar vibrations of the elastic boom and the planar pendulation of the payload.

The disturbances acting on the crane are the rolling action of the ship due to sea
motions in addition to the wind force acting directly on the payload. The dynamic of
the crane is described by a multi-model problem depending on the current values of the
cable length and boom luff angle.

Accordingly a variable-gain observer and a variable-gain controller were
designed. The controller used the estimated states and the measured roll angle to create
the required damping and to compensate for the rolling motion of the ship. Simulation
and experimental results showed that the expressed control strategy performs very well
and has a significant effect in suppressing the planar vibrations by 95% for different
operating conditions and payload masses.

This work focuses on modeling and control of three dimensional ship-mounted crane
with an elastic boom (see Figure 1.3). The goal is to dampen the planar and the
nonplanar elastic vibrations of the boom and the in-plane and out-of-plane payload
pendulations induced from sea wave motions causing the ship to roll and move in the

3D dimension and the air forces acting directly on the load due to the air .



1.2 Organization of the thesis

The thesis consists of four chapters; Chapter 1 is a literature reviews, Chapter 2 the
development of the mathematical model of the elastic boom and payload, the nonlinear
terms are separated using Taylor series expansion and the model is examined by
simulations to investigate the effect of the disturbances on the overall response for
different operating conditions.

In Chapter 3, the state space representation of the crane is obtained. A variable-gain
extended-Observer is designed to reconstruct the states and approximate the unknown
disturbances during the cargo transfer process, and a variable gain state controller is

designed to suppress the vibration. Chapter 4 summarizes the results and conclusions

with some recommendations which may be useful for future studies.

Payload

Figure 1.3: Modified ship- mounted crane structure.



2 Model development

In this chapter we will develop the mathematical model of the 3D-elastic ship-mounted

crane based on the configuration shown in Fig. 1.3. The elastic boom is modeled using

the finite element method. The dynamics of the payload is modeled using Lagrange

equation of energy. Three inputs are assigned to control the planar and nonplanar

vibrations of the elastic boom and payload due to excitations either from the sea wave

motion in X, Y, and z, directions or the wind forces acting directly on the payload, in

the same directions as the wave motion.

2.1 Assumptions

In deriving the mathematical model of the 3D-crane, the following assumptions are

considered:

The elastic boom (AB) is divided into five finite elements from (i = 1,2 ...5), thus
six nodes are considered.
The cross section of the elastic boom is circular.
The mass of cable L, is neglected and its length varies with time.
The elongation of the cables and the structural damping of the boom are neglected.
The slew angle a, represents the rotation of the elastic boom with respect to the
Yo axis’s.
The angle f represents the orientation of the boom axis with respect to the
horizontal. It is equal to the sum of the roll angle 46 and the luff angle p f = p +
Aé.
The disturbances acting on the crane are the rolling action of the ship 6 and x4,y,4
and z, displacement of the ship caused by the sea motion in addition to the wind
force P in the direction of (x,, yo,Zy) acting directly on the payload; this force may
appear due to a strong wind or a direct impact force which may happen by accident
during the operation of the crane.

6 and Y represent the in-plane and the out-of-plane motion of the payload

respectively as shown in figure 2.1 and figure 2.2.



» qa,pand L, are considered the control inputs to suppress the vibrations of

the payload and the elastic boom.

Figure 2.1: Modified crane configuration.

2.2 Kinematics of the payload

Assume that the position of the tip of the boom where the payload cable is attached is
expressed by the coordinates (Xg, Yy, Zo) as shown in Fig.2.2, therefore, the global

position of the payload is expressed by the coordinates (X o Yo Zop ) such that:

Xp = X¢ + Ly cosOsiny (2.1)
Y, =Yg — L, cos@ cosy (2.2)

The velocity components of the payload can be expressed as:



Xp = X¢ + L, cos@siny — L, 0 sin @ siny + L,1) cos 6 cos Y (2.4)
Y,~Ys — L, cos @ cosy + L, Osinf cosy + L,3p cos O sinyp (2.5)
Zp =Z7¢+ L,sin6 + L,0 cos (2.6)

Figure 2.2: Payload configuration.

2.3 Kinetics of the payload

The generalized forces corresponding to the generalized coordinates (0, y,L,) are

shown in Fig. 2.3; They can be expressed as:

E. = p, —TcosO siny 2.7)
F,=p, + T cos@ cosy (2.8)
E,=p,-T sinf (2.9)

Where:
T : represents the tension in the cable L.

(Px, Py Pz ) : the 3D-dimensional component of wind force.



The kinetic and the potential energies of the payload is given by Eq.(2.10) and Eq. (2.11)

respectively:
Ke = (1/2)m, (%," +7, +2,") (2.10)
U= mygY, (211)

Figure 2.3:Tension and wind forces configuration.
Thus the Lagrange equation can be expressed as

L:KE_U

=(1/2)m, (sz + sz + sz _ zgYp) (2.12)

The equations of motion of the payload take the following form (see derivation in
Appendix C):

d (aL) oL 0X 2y, 0z

- (— R 14 14 14
2t \58) "ag = x 59 Tivge Tz (2.13)



d (oL\ oL _ aXp+F6Yp+Fazp 214
dt \ay) oy Yoy Tay  Zay (219
d (oL\ oL __ 09X, aY, 07,

E(T%)_E_FX a—Lz-f-Fym-f‘an—Lz (2.15)

Substituting equations (2.2, 4, 5, 6) into equation (2.12), and after the evaluation of
equations(2.13, 14, 15) then the nonlinear differential equations of the payload

motion can be expressed as follows:

X¢ (=L, sin @ siny) + Y4 (L, sin 6 cos ) + Zg(L, cos 8) + OL,% + 201,L,
+1)2(L,* sin@ cos 9)
+ gL, sin6 cosy (2.16)
= (1/mp) [—P.L, sin 6 siny
tr, L,sin6 cosy + p, L, cos 6]

X¢ (L, cos @ cosp) + Yy(L, cos O siny) + YPL,? cos? @ + 24L,L, cos? @
— Y0 (2L, sin 6 cos O sin? ) + 62(L,* cos? 6 cos P siny)

+2(L,% cos? 6 cos P siny) (2.17)
+ gL, cos 8 sin g

=(1/m,) | pxL, cosO cosy + p_ L, cos@ siny
p y

X¢ (cosOsiny) + Yy(—cos @ cosp) + Zgsin@ + L, — H2L,>
—1%(L, cos? 6)

— g cos 0 cosy (2.18)

= (1/m) [pxcosesim,b -p, cosf cosy +p, sin6 —T]

According to equation 2.18 the tension T in the hosting cable can be expressed as
follows:

T =-m, [Xs (cosOsiny) + Y¢(—cosOcosy) + Zgsin@ + L, — 92L22
— ll)Z(Lz cos? 8) — g cos 0 cos 1,[)] (2.19)
+[p, cosfsiny —p, cosfcosy +p, sin 6]
In order to find the position of the tip of the elastic boom B(Xg, Yy, Z,) relative to the
spherical joint A (xg, Yo, Zo) = (X4, Ya, Z4)connecting the lower end of the boom to the
ship, the axis transformation method is used, considering that the boom AB rotates
around y, axis in clockwise direction with angle a and a round z, axis in counter

clockwise with angle f shown in Fig. 2.4, thus the obtained vectors are as follows :

X¢ = xpa + Ly cosacosff —wgcosasinfi — vgsina (2.20)
10



Yo = yoa + Ly sinf + wg cos

Ze = Zgq + Ly sina cos f —wgsina sin f + vg cosa

And the second derivative of (X, Yy, Z4) with respect to time are:

X¢ = X¥oata(—L, sinacosf + wg sinasinf —vg cosa)
+ (=L, cosasin f — wg cosacosf )
+ We(— cos a sin B) + Vg (—sin a)
+dB( 2L, sinasinﬁ+2wq sinacosf ) 2.21)
+ Wed (2 sinasin B) + wef(—2 cos a cos B) '
+ vga( —2v40 cos a)
+ @?(wg cosasin B + vg sina — Ly cos a cos )
+ B%(—Ly cosacos S +wg cosasinf)

Yo = ou + ﬁ(Llco.sﬁ — wg sinB) + we(cos B) + wygp(—2sin B) (2.22)
+ ?(=Lysinf — wg cos ) '

Zg = Zos + & (Ly cosacos B —wg cosasinf — vg sina)
+ B(~=Lysinasin B — wg sinacosB ) + wg(—sinasinf )
+ g(cosa) + aP(—2 Lycosasin p — 2wgcosa cosf ) (2.23)
+ Wg a(—2cosasinB) + wgB(—=2sina cos )
+ vga(—2sina )
+ &%(—L; sinacos B+ wg sinasin B — wg cos a)
+ B%(—L, sinacos B + wgsinasinf )

2.4 Kinematics of the elastic boom

In order to derive the equations of motion for the 3D-elastic boom (AB) using the finite
element model shown in Fig. 2.4. First: we need to find the absolute lateral
accelerations of the point B relative to point A which has an acceleration in the

three dimension space denoted by X ,, ¥ ,, Zo,-

From Fig. 2.4 it can be concluded that point B has two absolute lateral accelerations
in the vertical plane x,y, and in the out-of-plane x,z, denoted by a,,,a,, respectively.

Thus by utilizing the following equations :

11



Figure 2.4: Free body diagram of the elastic boom (AB).

gy,

= a4, +as), (2.24)

ap, =0y, + as, (2.25)

Zp Z

We can derive the absolute lateral accelerations for any of the elements of the elastic
boom (AB) as:
. Ay, = Yo, C08 B — Z,, sinasinf — ¥,, cosasinf +x, 8 +w (2.26)
a,, = Zy,cosa — Xy, sina +x,cospda +v (2.27)
Where w, v denotes the local deflection of the boom in x, y, and x,z, planes

respectively .

2.5 Dynamics of the elastic part of the boom

For deriving the finite element model of the elastic part (AB), the effects of rotary
inertia, transverse shear deformation, and the axial force are neglected. Accordingly,
with reference to the single element shown in Fig. 2.5, the equation of motion in x,y,

plane can be written as
12



me dx2 ay2

2 |
B
medﬁgco Vy2+dVy2
‘ Vy2 Wlll” )Mw+de
‘ MW( w+dw
! w
L7777777777777777» X2

Xo~—— dxz — X2+0dx2

xoF—— dx2 ——{xo+dx2

e S — e X2
| v+dv
‘ Mv(
‘ Vz2 )Mv+de
+ ‘ Vz2+dVz2

me dx2 az2

Figure 2.5: Geometry of a single boom element, all axial force
components are neglected.

av,
22 4 My, = —M,gCcosp (2.28)
dx, 2

and in x,z, plane the equation of motion is

v, (2.29)

where m, denotes the mass per unit length of the boom and a,,, a,,represent the
absolute lateral accelerations of the element located at x, ,
Substituting Eq. (2.26) into Eq. (2.28) and utilizing the relation
0 0w
|4 — | EI (2.30)

Y2 0x, \ 0xZ

13



yield

02 d2%w d2%w
7 \Elag) ¥ e e = P

where

Dy, (X2, t) = —m,fx, — m, cos B(g + jioA) + me(Z'OA sin a cos § +

Xo, COS a sin )
represents the distributed lateral load acting on the part AB in x,y, plane.

Substituting Eq. (2.27) into Eq. (2.29) and utilizing the relation

V, = g EIl 0%
2 9x, \ 0x2

yield
02 0%v 0%v
0z \F1oxz ) ¥ e gz = P2 D)
where
Dz,(X2,t) = —mx, cosf & —m, (Z'OA cosa — ¥, , sin )

represents the distributed lateral load acting on the part AB in x,z, plane.

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

The free body diagram of a single finite element of length | is shown in Fig. 2.6, the

transverse displacement w(¢{) can be related to the node variables (w;, v, Wiz1, ¥ i41)

in x,y, plane, and v(¢) can be related to the node variables (v;, @, V;41,Di4+1) in

X,Z, plane, through four cubic interpolation functions, such that:

w(§) = Ny, 9,

14

(2.36)



Fyai+)
pyz(Xz,t)

_ <
T
<
)

M w; ‘\
‘/
\
Yi
L*i*i*i* - X23C
X2=Xazi Xz=Xzi+l
£ =0 g=l
=0 C =|
X2=Xzi X2=Xzi+l

—— L R

M v(i+l) ¢ @Gi+l)
A

72 Fzai+1)

Figure 2.6: Single finite element.

where
9, = Wi, Vir Wi, Visal” (2.37)
is the node variables vector of order 4x1 in x,y, plane, and

1-3(5/D* +2(¢/D°

&y -28m+¢

| =208/ +3(4/D?
&/ = (/D

N (2.38)

is the cubic interpolation shape functions vector of order 4x1 [8] in x, y, plane which

is a typical method for the discritization of elastic continua.
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In the same manner we can derive the shape functions of element i in x,z,as
follows:

v({) = NL,9,, (239
where
9, = [vi @y, Vigr, @ isa]” (2.40)
is the node variables vector of order 4x1 in x,z, plane, and
1-3(5/D* +2(¢/1°
N, &/ =28/ +¢ (2.41)

2 7| —2(¢/D3 + 3(L/1)?
| @/ - (& ]

1s the cubic interpolation shape functions vector of order 4x1 [8] in x,z, plane

The element mass and stiffness matrices in x, y, plane for element i are defined

respectively as:

l
M,, = [ m,N, N} d (2.42)

156 221 54 —13I (2.43)
_met| 220 412 131 —3[2

"~ 420| 54 131 156 —22I
—131 =312 =221 4l

l . .
K,, = [[EIN, N} d¢ (2.44)

12 6l —-12 6l (2.45)
_EI| 61 41> —6l 2I?
S Bl-12 -6l 12 -6l

6L 212 —6l 412

where N, denotes the second derivative of N y, With respect to the local coordinate ¢ .
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In the same manner we can derive the mass and stiffness matrices of element i in

X,Z, plane and they are as follows:

l
M, = [ m,N,N.d¢ (2.46)

2

156 221 54 —13I (2.47)
_me| 221 412 131 —312

"~ a20| 54 131 156 —221
—131 =312 =221 4h?

K, = [ EIN, NI d¢ (2.48)

12 6l -12 6l (2.49)
_El| 6l 412 -6l 2I?

S B|=12 -6l 12 -6l
6l 212 —6l A4lI2

Therefore the local mass and stiffness matrices for the element i in both x,y,and

X,Z, planes can be expressed respectively as:

w; % Vi N Wis1 Vigr Yier  Pinr
r 156 0 22 0 54 0 —131 0 7

0 156 0 221 0 54 0 —13l] Vi
221 0 412 0 131 0 —312 0 Vi

md| 0 220 0 4 0 13l 0 -3 &

M. = 420

I
(2.50)

54 0 131 0 156 0 —221 0 [Wi+1
0 54 0 131 0 156 0 —221| Vi+1

—131 0 —31? 0 —221 0 41? 0 [Yitr

0 -—-131 0 =312 0 =221 O 412 1¢ i1

17



Wi Vi Yi @i Wi Visr Yier Pina
12 0 6 0 =12 0 6L 07 W
0 12 0 6 0 -12 0 6l| v
61 0 4% 0 -6/ 0 202 0|7V _
%
0 6l 0 4% 0 —-6L 0 22| ¢: o
EI
Kt = l_3
-12 0 -6/ 0 12 0 —6l 0 (Wi
0 -12 0 -6/ 0 12 0 —6l|vin
61 0 22 0 —-6I 0 4% 0 |Vix
L0 6l 0 22 0 -6 0 4121¢in

Also, the element force vector in x,Yy, plane (acting on the nodes i and i + 1 )which

ate [F, , My, Fy, M

T
wir By, o Mg, 1] can be also expressed as :

l

fJ’Z = fph(xz't) Ndeé/

0

(2.52)

Since p,, (x,, t) varies linearly with the position x, of the element, each element has a

different force vector whose magnitude depends on the location of the element along
the boom. Therefore, to calculate the integration in the right hand side of Eq. (2.52),

equation (2.32) is rewritten as:

pyz(xz't) = _meﬁ(xzi + g) - nyz (2.53)
with

nyz = m, cos ﬁ(g + j}OA) — me(ZOA sina cos f + X, , cos a sin ,8) (2.54)

18



where 0 < ¢'< [ is the local longitudinal axis of the element, and x,, locates the

element under consideration with respect to point A as shown in Fig. 2.6. Inserting Eq.

(2.53) into Eq. (2.52) and carrying out the integration yield:

[ 10foy, + mef(10x,, + 31) |

5 m,lf
—1 | 3Voy, -I-eT(szi + 21)

=_— ) 2.55
I =73 10foy, + mef(10x,, + 71) (253)

5 mlp
|— 3oy, =3 (52, +31),

the element force vector in x,z, plane (acting on the nodes i and i + 1 )which are

T
[FZZi, M,;, F'ZZL'+1' M, 1] can be also expressed as

l

[z, = f Dz, (X2, t) N, d & (2.56)
where ’
Dz,(X2,t) = —meé&(xzi cosf3 + é’) — foz, (2.57)
with
foz, = me(ZOA cosa — X, sin a) (2.58)

After inserting Eq. (2.57) into Eq. (2.56) and evaluating the integration the force vector

in x,z, plane becomes:

[ 10fy,, + med(10x,, cos B+ 31) |

5 myla
1 §lf022 + T(szi cosf + 2l)

5 == 2.59
= =73 10fp,, + me@(10x,, cos B + 71) (2:59)
5 mela
_—§lfoz2 — T(szi cosf + 31)_

Therefore the total local force vector has a dimension 8x1 for the element i in both

X, y,and x,z, planesis as follows :
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10fpy, + mef(10x,, + 31)
10fo,, + me@(10x,, cos B + 31)
5 m,lf
3 Yoy, + “"Tﬁ (5x, + 21)
5 myld
3oz, + —3— (5x, cos B + 21)
201 10f,,, + mof(10xy, + 71)
10fy,, + me&(loxzi cosf + 7l)

5 m,lf
—3 oy, — eT(szi +31)

5 myla
—3 oz, = T(szi cos§ + 31)

Y2i+1

22i41

Wit1

Vit+1

(2.60)

By dividing the boom into five elements (i = 1,...,5), the mass matrix, the symmetric

stiffness matrix, and the nodal force vector for the complete boom (AB) can be easily

constructed by the assembling process [8] such that :

[M] = i[Mt]
5

K] = ) [K,]

i=1
5

[F1= ) [f]

i=1

where :

(2.61)

(2.62)

(2.63)

M, K, F represent the symmetric mass matrix, symmetric stiffness matrix and the nodal

force vector respectively for the complete elastic boom (AB).

After utilizing the equations (2.61), (2.62) and (2.63) the following expression for the

matrices were found :
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5, (10foy, + 3lm.f)
E,. (10fp,, + 3lm,é )
5 21%m,f
Mwl <§lf0y2 + 3e >
5 20%°m, d
E,, (20f5y, + 200 m,f)
E,, (20fos, +m.il(10cosf +10))
4m,12f
I’m, &
My, 3e ((5 cosﬂ—l))
E,, (20foy, +40lm,f )
E,, (20fos, +m.@l(30cosf +10))
4am,12p
l o 3
F=— 1’m, @
20| My, 3e ((5cosp—1)) (2.66)
E,, (20f5y, + 60l m,f)
E,, (20fos, +medl(50cosf +10))
4m, 126
M,, g
I’m, &
My, 3e ((5 cosﬁ—l))
E,. (20foy, +80lm,f )
F,, (20fos, +medl(70 cosf +10))
4am,12p
M,, .
I’m, &
My, 3e ((5cosp—1))
Fy26 Tyz
226 TZZ
My, 0
| My 0

Now, the equations of motion that governs the elastic vibrations are presented by:

MY+ K9=F (2.67)
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where M and K denote the 24x24 constant mass and stiffness matrices respectively,

F denotes the 24x1 nodal force vector and

I=[w; v V1 G1 .. We Vs Ve ¢6]T (2.68)

is the 24x1 nodal displacement vector with w;and y;representing the nodal
translational and rotational displacements respectively at node i with respect to the x,-
axis of the boom in x,y, plane, and with v;and ¢; representing the nodal translational
and rotational displacements at node i with respect to the x,-axis of the boom in x,2z,

plane.

It is very important to be noted that, in the total node vector F at node 6 (Eq. 2.66)
the tension in the cable L, is the only external force which acts on that node with both
tension components T, and T,,, and all the reaction forces and moments are equal
zero. But before adding the tension to the force vector, the components of the tension
in x,y, and x,z, planes should be determined.

Using the principle of axis transformation method. The following equations are

obtained for these components:

Ty, = T(—cos@sinysinf cosa — cos 8 cos cos f§

— sin @ sin a sin ) (2.69)

T,, = T(—cos@sinysina + sinf cos a) (2.70)

where:

T,,, T, are the components of the tension in both x,y, — and x,z, —planes

respectively.

Because the boom is clamped at point A, the translational and rotational displacements

of the elastic boom at node 1 must be zero, sow; = 0, v; =0, y; =0 and ¢, =0,
23



then the order of mass and stiffness matrices (M , K) reduced to 20 X 20 and the force
vector (F) order reduced to 20 X 1. Thus, the reduced displacement vector ¥ will be

represented as follows:

9 =[W2 V2 V2 ¢y ... We Vs Ve ¢gl” (2.71)

and the system mass and stiffness matrices respectively will be reduced to the

following:
312 0 0 0 54 0 -130 0 0 0O 0 0O 0 O 0 0O 0 0 0
0 32 0 0 0 5 0-1330 0 0 0 0O 0 O 0 0O 0 0 0
0O 0 8% 0 13 0 —-320 0 0 0 0 O 0 O 0 0O 0 0 0
0O 0 0 82 0 13 0 320 0 0 0 O 0 O 0 O 0 0 0
54 0 131 0 312 0 0 O 54 0 -13.0 0 0 0 0 0 0 0 0
0 54 0 13/ 0 312 0 0 0 5 0 -13.0 0 0 0 0 0 0 0
131 0 =312 0 0 ©0 8% 0 13 0 -3 0 0 0 0 0 0 0 0 0
0 -13. 0 =32 0 0 0 82 0 13 0 -32 0 0 0 0 0O 0 0 0
0 0 0 0 54 0 13 0 312 0 0 O 54 0 —-13.0 0 0 0 0
Tl 0 0 0 0 0 54 0 13 0 312 0 0 0 54 0 -130 0 0 0
“%20[ 0 0 0 0 -13 0 -3>20 0 0 82 0 13L 0 =320 0 0 0 O
0 0 0 0 0 -131 0 -32 0 0 0 82 0 13Z 0 -32 0 0 0 0
0 0 0 0 0 O O O 54 0 13 0 312 0 0 0 54 0 —13L 0
0O 0 0 0 0 0 O O O 54 0 13 0 312 0 0 0 54 0 —131
0O 0 0 0 0 0O O ©0-13 0 -3>0 0 0 82 0 13 0 —31%2 0
0 0 0 0 0 0 0 0O 0 —131 0 -32 0 0 0 82 0 131 0 —3I2
0o 0 0 0 0 0 O 0 O 0 O O 54 0 13 0 156 0 —220 0
o 0 0 0 0 0 0 0 O 0 O O O 54 0 13 0 156 0 —22
0 0 0 0 0 0 0O 0 0O 0 0 0 —131 0 =312 0 —220 0 412 0
0o 0 0 0 0 0 0 0 O O O 0 0 —13L 0 —312 0 —221 0 42

24

(2.72)



24 0 0 0-120 6 0 0 0 0 0 0 0 0 O O O 0 O
0 240 0 0-1206/ 0 0 0 0 0 0 0 0 0 0 0 O

0 08°0-6/0200 0 0 0O 0 OO0 O 0 0 O

0 0 080 —-6/020 0 0 0O 0 0O O 0 0 O

120 -6/0 24 0 0 0-120 6/, 0 0 0 0 0O O O 0 O
0-120-6/0 24 0 0 0-120 6/ 0 0 0 0 0 0 0 O

6l 020 0 0820-6/02200 000 0 0 0 0

0 6/ 02 0 0 080 —-6/0200 000 0 0 0 0

0 0 0 0-120 —-6/0 24 0 0 0-120 600 0 0 0 O
I?=E 0 0 00 0-120-6/0 24 0 0 0—-120 6/ 0 0 0 O
3l 0 o 0 0 6/ 020 0 0 8% 0-6/0200 0 0 0

0 0 0 0 0 6/02*0 0 08*0—-61020 00 0

0 0 00O 0 0 0-120 —-6/0 24 0 0 0-120 6/ 0

0 0 00O 0 00 0-120-610 2400 0 —-120 6l

0 0000 0 O0O0 6 020 0 08%0-6l02%0

0 0 00O 0 0 0 O 6/ 020 0 08* 0 —6l0 20

0 0000 O 0O 0O O O 0-120-600 12 0 —6l0

0 0 00O 0 0O OO OO0 0-120-610 12 0 —6l

0 0000 0 0O O 0 O 0 6 02%0-6l04%0

Lo 0 00O 0O OO O 0O 0 O 0 60 0°2%0 —6l0 4%

also, the reduced force vector will be expressed as follows:
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E,, (20fyy, + 201 m.p )
Fr, (20fos, +medl(10cos f +10))
am,I2f
Mos 3
1’m, @
My, 36 ((5 cosﬂ—l))
E,, (20fyy, + 401 m.f )
Fo, (20foz, +meil(30cos f +10))
am,I2f
M,,, ——
2m
My, r;lea((S cosB—l))
il B (20fyy, + 601 m.f )
F=%|E, (20f, +meal(50cosp +10)) (2.74)
am,I2f
Mo BER
’m, @
M, 3 ((5cosp—1))
E,. (20fyy, + 801 m,f )
E,. (20fos, +medl(70cosf +10))
am,12f
M,, ——
I’m, @
My, 3 ((5 cosB—l))
F)’zﬁ Ty2
F226 TzZ
My, 0
| M, 0

2.6 Derivation of the operating point

The operating point of the payload variables (8,v, L,, ) is considered to be equal to
(0,0, Ly, [)’0), with f = p + & where p is the luff angle, thus B, = p,, and the wind
forcesp, =p, =p, = 0.

The elastic translational and rotational displacements vector q, can be computed from

Eq. (2.67) by setting ¥ and the time dependent terms in F equal to zero, i.e.

qo - I_{_lfo (275)
where,

q0=[W20 V2o V2, by oo We, Vs, Ve, ¢60]T (2.76)
and
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20m,g cos pg T
0
0
0
20m,g cos pg
0
0
0
20m,g cos pg
=l 0
Fy=— 0
0
20m,g cos pg
0
0
0
- 20
Tmpg oS Py
0
0
0

In view of equation(2.75), one obtains:

qo =

—1/31® gcospy (13m, 1 +7m,)/E I

0
—1/21% gcospy (16m, 1 +9m,)/E]
0
—1/6 1% gcospy, (89m, 1 +52m,)/E I
0
—1/21% gcospy (25m, I +16my)/E I
0
—3/21% gcospy, (19m, 1 +12m,)/E I
0
—1/21% gcospy (29m, 1 +21my)/E I
0
—2/31% gcospy (65m, 1 +44my,)/E I
0
=312 gcospy (5m, L+ 4my,)/EI
0
—25/31% gcospy (Tm, l+5m,)/E1
0
—5/21% gcospy (6m, l+5my)/E I
0

27
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2.7 Expanding the model about the current operating point

In view of equations (2.21, 2.22 and 2.23) and applying Taylor series expansion to the
payload nonlinear model equations (2.16 and 2.17) yields to the following linearized

equations:

Awg(Ly, mp)(—sinagsinp ) + Ave(Ly, my)(cos a,) + AémpLZOZ
+ (gmpL,y, — P, Ly )AO

=P, Ly, — A (LZO mp)(L1 €OS Ay COS P — Wg, COS O SiN P )

0 2.79
- Aﬁ(LZOmp )(—L1 sin o sin p, — wg,, sinag cosp; ) ( )
— 03ga(Lyy mp) + P,AL,
- AS(LZO mp)(—L1 sin o sin py — we, sinag cosp )
AwemyLy, (— COS & Sin po) + Avgmy, L, (—sina,) + A l])'mpLzo2

+ (mngzo -p, LZO)AI/J

- prZO

—Aa Lzomp(—L1 sinag cos p, + Wg,, sina sinp, ) (2.80)

- A;’)’Lzomp(—Ll COS g Sinp; — Wg, COS @ COS p,

- AjéOAmpLZO

- A6mpL20(—L1 Cos g sinp, — Wg, COSQ( COSp, )

+ ALy,

0

Similarly, in view of equations (2.21, 2.22, and 2.23), the forces acting on node 6

(T, , T, ) described by equations ( 2.69 and 2.70) can be linearized to:
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—alws 0

—-20 .
Ty, = —— Ayoamy cospy

: 20 ) ) .
—TmAp ( Lycos?py — we, sin pg cos py)
20 . , _
— TA&mp( Lycos?py_we, sin pg cos po)
20 , 20 .
- TmpAW6( cos” pg) + TmpALZ oS Py
20
— My €os po

20 . (2.81)
—TAL|J( Py cospy, +myg sinp,cosa,

— Py Sinpgcosay )

20 . .

- AB(m,g sinagsinp,

+p, cosp —p, sinaysinp,)
20 20

+ pr COoS Pg _TAP(_ my,gsin p + p,, sin p)
20

— TA(S(— m,gsinp + p, sinp)

—20 .
Ty =~ [8(m,g sinag —p, sinay) 2382)

+ A8 ( —m,gcosay +p, cosap)]

Therefore, the total mass matrix [M] becomes:

w, U, V2 Py w3 Y3 ¥z B3 w, Oy Ve Oy w5 Vs Vs Ds We e Yo D6 0 [
w,312 0 0 0 54 0 -131 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9, 0 312 0 0 0 54 0 -13L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Add,
Y. 0 0 8% 0 131 0 -312 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A,
9, 0 0 0 8% 0 131 0 -32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ay,
w3 54 0 131 0 312 0 0 0 54 0 -131 0 0 0 0 0 0 0 0 0 0 0 Aq‘gz
¥9; 0 54 0 131 0 312 0 0 0 54 0 —-13L 0 0 0 0 0 0 0 0 0 0 Addy
y;—131 0 =312 0 0 0 8% 0 131 0 -31* 0 0 0 0 0 0 0 0 0 0 0 Ay
@, 0 —13L 0 =312 0 0 0 8% 0 131 0 =312 0 0 0 0 0 0 0 0 0 0 Ay,
w, 0 0O 0 O 54 0 131 0 312 0 0 0 54 0 -131 0 0 0 0 0 0 0 A(ﬁg
9, 0 0 0 0 0 54 0 13l 0 312 0 0 0 54 0 -—-131 0 0 0 0 0 0 Ao,
Vs O 0 0 0 —13L 0 -312 0 0 0 8% 0 131 0 =312 0 0 0 0 0 0 0 A9,
[ 0 0 0 0 —13L 0 -312 0 0 0 8% 0 131 0 -3 0 0 0 0 0 0 A,
0 0 0 0 0 0 0 5 0 13 0 312 0 0 0 54 0 —131 0 0 0 o, (283)
Y5 0 0o 0 0 O 0 0 0 0 54 0 131 0 312 0 0 0 54 0 —13!1 0 0 Adds
ys O 0o 0 0 O 0 0 0 —-13L 0 -31> 0 0 0 82 0 131 0 =312 0 0 0 A19:
@s 0 o 0 0 O 0 0 0 0 —-131. 0 -31> 0 0 0 82 0 131 0 312 0 0 A}'/':
we 0O 0 0 0 0 0 0 0O 0 O 0O O 54 0 13 0 (156 + 8::1072” coszpo) 0 —221 0 0 0 Ads
. .
Ys 0 o 0 0 O 0 0 0 0 0 0 0 0 54 0 131 0 156 0 -221 0 0 i{;(’
Ye O o 0 0 O 0 0 0 0 0 0 0 -13L 0 -31> 0 —221 0 42 0 0 0 A}'/'E
Ps O o 0 0 0 0 0 0 0 0 0 0 0 —-131 0 -3 0 —221 0 42 0 0 A“s
420m,, . ) 420m,, 420m, * Ps
e 0o 0 0 0 0 0 0 0 O O O O O O o0 O ( Ly, sin a, sin py ) ( Ly, cos ag) 0 0 <—LZD ) 0 Af
m,l ml ml A
420m, ) 420m, ) 420m,
» 0 0 0O O O O O O 0 0 o0 0 0 0 0 0 (7L20 p cos a, sin py )(7 ol Ly, sma0> 0o 0 0 < ol Ly, )

and the stiffness matrix [K] becomes:
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EI
13

Wy Yy V2 @ w3 V3 V3 @3 Wy Yy Vs D4 ws Ts5 Vs s ws Y6 Ve D6 0 Y
w,24 0 0 0-120 6,0 0 0 0 0 0 0 0 O 0 O O O 0 0
9 0 240 0 0-1206/0 0 0 0 0 0 0 0 O 0 0 O 0 0
y, 0 0820 —-6/02200 0 0O0 0 0O0O0O0 0 O0 0 0 0 Aw,
%, 0 0 0820 -6/02%0 0 00 0 0 00 0 0 0 O 0 0 A9,
w;—12 0 -6/ 0 24 0 0 0-120 6/ 0 0 0 0 O 0 O O O 0 0 Ay,
9, 0 -120 -6/ 0 24 0 0 0-120 6/ 0 0 0 0 O O 0 O 0 0 Ag,
y; 60/ 0 2120 0 0 820-6/0 220 0 0 0 0 0 0 0 0 0 0 Aws
®; 0 6/ 0220 0 0820 -6/0220 0 00 0 0 0 O 0 0 Ad;
w, 0 0 0 0-120-61024 0 0 0-120 6/ 0 0 0 0 0 0 0 Ay;
9 0 0 0 0 0-120-10 24 0 0 0-120 6/ 0 0 0 0 0 0 Agps
¥ 0 0 0 0 6/ 0220 0 0820-6/020 0 00 0 0 0 i‘l‘;*
¢, 0 0 0 0 O 6 020 0 082%0—-6/02%0 0 0 0 0 0 A“
ws 0 0 00O O 0 0-120-6/1024 0 0 0-120 6L 0 0 0 Ay“ (2.84)
9% 0 0 0 0 0 0 0 0 0-120-610 24 0 0 0 —-120 6l 0 0 AZ"
ys 0 0 0 0 0 0 0 0 6/ 0 220 0 0 8% 0 -6/l 0 2120 0 0 Aﬁs
% 0 0 0 0 0 0 0 0 O 6/ 0220 0 0 8% 0 —6l0 202 0 0 Ay:
—2012 —2002
wg 0O 0 0 0 0 0O 00O O 0 O 0-120-610 12 0 610 il (mpg sinag sinpy +p, cosp —p, sinaosinpD)T(px €ospy +my g sinp, cos oy —p, sinpncosao) 24’5
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With force vector F:
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Now the linear equations of motion of the crane can be expressed as:

M,y + Koq = B;d + Byd + Bsu + B,ii + Bsp
Where
q = [AWZ sz Ayz A@Z . ___A W6 Av(, Ay6 A ®6 AH Alp]T

denotes the 22x1 generalized displacement vector, and
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denotes the 4x1 generalized measured disturbance vector, and
u=[Ap Aa AL, ]|T (2.89)
denotes the 3x1 generalized the control input vector, and
p=[8px Ap, Ap,]” (2.90)
denotes the 3x1 generalized wind force vector, and

M, and K, are the total mass and stiffness matrices respectively of order 22x22, B;

and B, are disturbance matrices of order 22x4,

o
o
o

— 20m,g sin p,
0
0
0
— 20m,g sin p,
0
0
0
— 20m,g sin p,
0
0
0 (2.91)
— 20m,g sin p,
0
0

0
-20
T ( p, sinp, — m,gsinp )

=
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and Bs 1s the wind disturbance matrix,
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The measurement vector y,,, and the interested outputs Yy are specified as
— T
Ym = [AW6 A176 0 l/)] (296)
= (1q

where €4 is the measurement matrix of order 4x22; it describes the position of the

sensors on the crane.

Aw, .. Awg Avg 6 Y
0 1 0 0 0
c.— |0 0 1 0 0
1 0 0 0 1 0
0 0 0 0 1
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3 Control system design
3.1 Introduction

This chapter presents the observer and controller design in order to minimize the
pendulation of the payload which can be induced from ship rolling or from any other
disturbance that can act on the crane during the cargo transfer operation. When the
frequency of the ship rolling is close to the eigenfrequency of the crane for a period of
time, resonance will occur and the pendulation of the payload can grow to a dangerous
level even with small amplitude of the disturbing motion. This means that, if no
control is used, the operation of the crane should be suspended. This control problem is

explained in detail in this chapter.

3.2 State space representation

The linear equations of motion of the elastic boom and the payload, obtained in Eq.
(2.86), can be rewritten as

To obtain the state space model for the above equation, let

Z1 = Moq - Bzd — B4u (32)
Zy = Moq - Bzd - B4u (33)

Then from Eq. (3.2)

q= My'(z, + B,d + B,u) . (3.4)

Thus the state space equations, corresponding to the current operating point, can be

expressed in vector form as

z=Az+Bu+Ed+ Np (3.5
where

z=[z1 2| (3.6)



denotes the state vector of order 44x1, and
0 |
=g o) (3.7

0
B= [—Rol‘_’lal B, + 33]’ (3-8)

represent the corresponding system and input matrices respectively, and

0
E= [_I_{OM(;lBZ + 31]’ (3.9)

N = [;’5], (3.10)

represent the disturbance matrices due to ship rolling and disturbance force acting on

the payload respectively. Here M, is assumed to be non-singular.

In view of Egs. (3.2, 3.3), the initial conditions of the states can be expressed as

O KA | P [ PR A Y b
The displacement vector g from Eq. (3.3) can be rewritten as

q=[M;* 0]z +My'B,d + My'B,u (3.12)
Therefore, the measurements y,, , given by Eq. (2.96), can be written as

Ym =Cz+ Du+Fd, (3.13)
where

C =[c;M;t 0] (3.14)
denotes the output matrix, and

D = [C{My'B,]. (3.15)

F=[C, My'B,] (3.16)
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represent the input and disturbance direct transmission matrices respectively. Here the
rolling motion of the ship A45(t) in addition to the displacements (Ax,,Ay,,Az, ) are

assumed to be measured.

3.3 Simulation results

In order to find the effect of the disturbances (Axy, AYoa, AZga, APos). The simulation
was done to the state space model, applying the minimum eigenvalue of the system
matrix A as the frequency of the sinusoidal disturbance acting on the system, the result

of the simulation was as follows:

Avg(m)
Numerical values of the
crane parameters:
Apy = 45", Aay = 20°
Lyo =4m,my, =100 kg

AOB(rad)
AY(rad)
0.5 T T T T T T
disturbance Axgs[m] o T l
-0.5 ! \\“*—v—/\ | | \r—/\/ |
0 1 2 3 4 5 6 7 8 9 10
time(sec)

Figure 3.1:The effect of Ax,, on the crane .
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Figure 3.2:The effect of Ay,, on the crane .
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Figure 3.3:The effect of Az,, on the crane .
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Awe(m)
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Avg(m) OWWWWWMM Numerical values of the
‘ 1 1 | ! l crane parameters:
L L L L L

Apo = 450 ,Aag = 200
Lyo =4m,m, =100 kg

AB(rad)

AY(rad)

disturbance A8y 4[rad] 0'8 — ‘ L~ ‘ ‘ |
-0.5 | M | | w |
0 1 2 3 4 5 6 7 8 9 10
time(sec)

Figure 3.4:The eftect of Ad,, on the crane .

We can conclude from the figures above that amplitude of vibration grows without
limit due to disturbances that have a frequency matching the fundamental eigenvalue

of the system, and this is the problem that to be solved by building a suitable controller.

Also, simulation results for different initial conditions of the payload cable (6 and ),
are shown in figures (3.5,6,7), it is clear that any non zero initial condition of the
payload cable results in periodic oscillation. This is reasonable because the internal

damping is neglected.
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Figure 3.5:The effect of initial condition of Ay = 1 rad,
A6 = 0rad on the crane .
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Figure 3.6: The effect of initial condition of Ay = 0 rad,
A8 = 1rad on the crane .
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Figure 3.7: The effect of initial condition of Ay = 1 rad,
A6 = 1rad on the crane .

3.4 State and disturbance estimation

In order to design an optimal state feedback controller, all state variables must be
achievable. In most cases, as it is seen in the ship crane under consideration, not all the
state variables are measured since the required sensors are not available due to
economic or practical reasons. Only 4 out of 44 states can be easily measured which
are [Awgs AY9¢ 6 P].In order to reconstruct the entire state vector z, a suitable
observer can to be designed as a first step to realize optimal state controller design if
the related conditions for applications are fulfilled. Since the state space model of the
crane contains the unknown disturbance forces p, the state variables and the unknown
disturbance can be estimated by using a special observer design able to reconstruct
system states in presence of additional unknown effects acting on the system. Here a
extendable observer [7, 9, 10, 11] could be used. The structure of this observer is

shown in Fig. 3.8. The estimated states are represented by the equations
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Z=A2+Bu+Ed+Np+ L (¥m — V) (3.17)

and the unknown disturbance is reconstructed by

P = L(Ym—Vm) (3.18)
where ¥, is the output of the observer, L; and L, are the observer gain matrices of
appropriate dimensions. Due to the difficulty of finding a simple linear model that can
adequately describe the unknown disturbance, which is principally unknown, a suitable
design procedure is necessary. Since any continuous signal can be approximated by a
series of step functions, a practical choice for the linear model corresponding to the
estimate of p is a stepwise-constant approximation. If the signal is fast, then the
observer dynamics should be also fast for the approximation to hold. Since the main
expected cause of p is the wind force, which usually has a low frequency, the
disturbance can be estimated adequately without the need to use a relatively high gain
approach. Therefore, the modified extended model can be written as
{- 18 2[E) s Bl [ s
Z 4, Be Ec L, (3.19)

with

(3.20)

This model gives the base for the observer development [7, 10, 12, 13]. It is necessary

that the extended system is observable, 1.e.,

rank [’M c_ Ae] = dim(z) + dim (p) (3.20)

is satisfied for all eigenvalues 4; of the system.
Now consider the real system represented by Eq. 3.5 it can be written in another form

as follows:
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z=Az+Bu+Ed+ Np (3.22)

Now, we can write the above two equatiiZ)n:s Izan be written in compact form as:
[;] B [’3 1(\),] [zzv] + [g] u+ [ﬁ] d+ [i] p (3.23)
J

By subtracting Eq. 3.23 from Eq.3.19, the error dynamics of the extended observer

can be expressed by:

e=A4.e—L, (ym_ym)+]p (3.24)

=GB .

denotes the error vector of the extended observer, and

where

J= [‘I)] (3.26)

represents an input matrix to the error equation. Here the gain matrix of the observer
L, is found by minimizing a linear quadratic performance index, which leads to

solving the algebraic Riccati equation:

AP + PAl +Q. —PC{ R;!IC.P =0. (3.27)
Here, this equation is solved using the built in matlab function lqr such that:

l.=lqr(4.",C.", Q. R.) (3.28)

L, =1" (3.29)
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Figure 3.8: Structure of the extended observer .
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where A,” represents the transpose of the extended system matrix with dimension

47 by 47 and C eT is the transpose of the extended system measurement matrix with
dimension 4 X 47,Q.,47 X 47and R, 4 X 4 are symmetric positive definite

weighting matrices for the extended states and the measurements respectively .

One important point to be mentioned here is that the estimation error corresponding to
the last three states of the wind forces p = [Px Py Pz]|T in A, matrix have to be
weighted much more than the other 44 states, i.e., the observer eigenvalue
corresponding to last state should be far to the left of the other eigenvalues in the
complex plane, we can accomplish this by setting the last entities in Q, corresponding
to the wind forces very big weight. All other eigenvalues are weighted such that the
observer is asymptotically stable and sufficiently faster than the real passive system.
This guarantees that the observer error converges to zero in real time, which means
that the estimates converge to their real values in real time and are ready for the
implementation of an optimal state feedback controller; this strategy is successfully
used for fault diagnosis of large systems [7, 10] and other engineering applications [7,
11, 13].

Simulation result for an actual wind forces signal p and their estimated values from the
observer are shown in Fig. 3.9. All the simulation result are based on the following
crane parameters:

L,y = 3m,m, = 100kg, p, = 45, ap = 20’

Px = Py = P, = 5[N] are the actual values of the wind forces.

The simulation results in figures (3.9, 10, 11) were done under the effect of rolling
disturbance A§ with frequency close to the fundamental eigenvalue of the system.

As you can see from Fig.3.8 the observer estimated the wind forces with dynamic error

approached zero.
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Px[N]
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Figure 3.9: The actual and the estimated signals of the wind forces.

Avs Aws Avg ] are shown together with their estimation values in Fig.3.9

The simulation result for the unmeasured displacements and their time derivatives

[AWS
and Fig 3.10 respectively.

estimatedAws[m’
actual Aws[m]
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Figure 3.10: The actual and estimated signals of [Aws Avs].
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All the above simulation results are done under the effect of sinusoidal measured
disturbance X;,4. As we can see from Fig. 3.10 and Fig. 3.11 the observer estimates the
unmeasured states with a dynamic error equal to zero.

As you can see from Fig. 3.12 when the initial conditions of the observer are set to

zero and the actual initial condition vector of the original system is characterized by

0=y = %. Note that the error of the observer due to the difference in the initial

conditions disappears in the first second, and the observer estimates the wind forces

very well.

Figure 3.11: The actual and estimated signals of [Aw,
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Figure 3.12: The actual and the estimated signals of the wind forces under the
effect of the initial conditions of original system.

It is clear from Eqs.3.23 that the observer gain matrix L, depends directly on the

extended system matrix A, in addition to the measurement matrix Ce.Also, the matrix
A, depends on the system matrix A which is governed by the mass matrix M, and the

stiffness matrix Kg . Since M,y and K, are calculated at the current operating point,
which varies with the length of the payload cable L, , the boom luff angle p, and the
slew angle a; , the observer gain matrix L, must be updated according to the current
operating point. This leads to the concept of developing a variable-gain extended

observer which can cover all possible operating points of the crane.

To design such an observer, the length of the payload cable L, is divided into three

ranges with an increment of 2m, the luff angle p, is divided into three ranges with an

increment of 20°and the slew angle a, is divided into 12 ranges with an increment of

30" as shown in figure 3.13 which means that the operating of the crane is covered by
3 X 3 X 12 =108 region, each region is characterized by an integer number i that
governs the calculation of the corresponding gain matrix L,. This yields that, the

operation of the crane is covered by different observer gain matrices (L, ); . The
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switching between these gains takes place automatically according to the output (i) of
the region finder (Fig. 3.13), which uses the measurements of the luff angle, the length

of the cable and the slew angle to detect the current operating region.

Layer 12

— =
Layer 1 . p (;0
- 300
L20 - 0°
o
A
Py

Figure 3.13: The operating regions of the crane.

3.5 Controller design

The extended observer discussed in section 3.4 reconstructs the states and the
unknown wind forces p, now one can design a state feedback controller for the
model given by Egs. (3.5) and (3.13), in order to reduce the effect of the disturbances

and to ensure safe cargo transfer of the cane.
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3.5.1 Optimal state feedback control

Using the extended state observer described in section 3.3, an optimal linear state
feedback controller can be designed if the system is completely state controllable (the
system is said to be controllable if an input to a system can be found that takes every
state variable from desired initial state to desired final state) if the eigenvalue are
distinct. State controllability can be confirmed by transformation the state space model

given by Eq. (3.5) into a diagonal conical form or (Jordan canonical form);

Let
x=Vz
=V (3.30)
where
V columns are the eigenvectors of the system matrix A
so the transformed model will be as
L _p-1 -1 -1 -1
x=V ' AVx+V "Bu+V "Ed+V 'Np (3.31)

Ac B¢

the matrix A, represents the modal canonical system matrix form in which its diagonal
represents the eigenvalues of the system, so to ensure the state controllability, the input
matrix B, must have no rows with zeros for all values of payload cable L, , the rolling

angle p and the slew angle a under consideration [7, 14].

In order to design a closed loop state feedback controller, all the state variables are fed
back to the control input u vector through again matrix —Kj so the input vector u can

be written as:

u=-Kz (3.32)

By inserting Eq. (3.32) into Eq. (3.5) gives
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z=(A—-BK;)z+Ed+ Np
Af
The new system matrix Ay matrix depends on the original system matrix A ,the

(3.33)

original input matrix B and the gain closed loop state feedback control —K ;. Now by
changing the gain matrix we can change the place of the eigenvalues of the system to
reduce the effect of the disturbances that act on the crane and to ensure safe cargo

transfer of the cane.

The state feedback matrix K § can be calculated as
Ky = R 1BTP (3.34)

where P represents the solution of the algebraic Riccati equation [7, 15, 16]

ATP +PA+Q-PBR'BTP =0. (3.35)

Here Q and R are symmetric positive definite weighting matrices of the states and
inputs respectively [7, 17]. According to the numerical structure of these matrices, the
eigenvalues of the controlled crane system can be altered to get the required behavior
of the dynamic response. In reality, the estimated states are used in the feedback loop
instead of their real values. Therefore, to guarantee the operation of the controller, the
observer must be faster than the real system. Therefore, the eigenvalues of the observer
are placed enough to the left of the eigenvalues of the controlled crane; this can be
done by tuning the numerical structure of the corresponding weight matrices. It is also
important to mention here, that the numerical values of the controller gain K; must be
updated according to the current operating, which is governed by the current length of
the rope Ly, , the current luff angles py and the slew angle a, is determined by the
region finder as discussed before in section 3.4. A block diagram representation of the

proposed control strategy is shown in Fig. 3.14.
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Figure 3.14: Block diagram of the control system.

3.6 Robustness

Stability and performance robustness must be taken into consideration in designing
feedback control systems. A stable closed loop feedback control system is said to be
robust with respect to stability if it remains stable after some changes have been made
in the physical or control parameters of the system. In addition, if the system still
fulfills a given level of acceptability of a specific performance criterion such as
damping or settling time, then the system is said to be robust with respect to its
performance [7, 18]. Here the parameters of the crane vary depending on the current
operating point leading to a multi-model problem. Accordingly, the used control
strategy is based on dividing the operating parameter space into 9 uniform regions for

each layer (number of layers 12 ) shown in Fig 3.13 ; each region uses a different
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controller/observer gain set. The size of the region is limited such that the stability and
performance robustness of the closed loop control system are ensured over the region.
There are many methods to check robustness over the operating region; in the crane
under consideration, robustness is guaranteed such that, for all operating points inside
each individual region, the dominant eigenvalues of the closed loop system remain in
the neighborhood of their nominal values that correspond to the calculated gain of the

controller.

To find the appropriate point inside the region at which the corresponding controller
gain should be calculated, consider for example the region R; in the first layer shown
in Fig. 3.15, and assume, as a first trial, that the region is covered by a constant gain
controller and a constant gain observer, and assume that the gain matrix is calculated at
the center of the region, i.e., the observer gain matrix and the controller gain matrix are

calculated at p, = (15°+35)/2 , Ly, =(1m+3m)/2 and a, = 15 these

values represent the center of the operation region R, . The weighting matrices Q and
R for the controller are selected such that, sufficient damping is created in the crane.
Q. and R, for the observer are selected such that the dominant eigenvalues of the
observer to be placed far enough to the left of the dominant eigenvalues of the
controller to make the observer faster than the controller to estimate the unmeasured
states and wind forces to feed the controller with the estimated data. Since A and B

vary with the current operating point (Lo, ,p,, @) inside the current region, the

eigenvalues also vary consequently.

The plotting of the imaginary parts versus real parts of the three dominant eigenvalues
of the closed loop system (4;,4,, 43 ) due to the variation in Ly,, o, and a, inside
the region R, are shown in Fig. 3.16 . It can be easily recognized that as the operating
point varies inside the considered region the eigenvalue A, get closer to the imaginary
axis, which means that the crane will lose a considerable percentage of its relative

stability with a reduction in the damping ratio.
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Figure 3.15: Operating regions (R; ),i = 1, ....,108
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Figure 3.16 : The plotting of (4,, 4,, 43) for R;, the design point
is the center point of the region.

To overcome this problem, the observer and the controller gains should be updated
continuously inside the operating region according to the current value of
(Loz , po,@p) to preserve the damping ratio and relative stability over the region. In
this way, the gains are calculated at each individual corner of the considered region;
the weight matrices are chosen to produce nearly the same relative stability and
damping at each corner, and each corner gain should provide a stable operation of the
crane for all possible operating points inside the region. The total value of the
controller gain, corresponding to the current operating point, is described by the 3-D

interpolation polynomial in Eq.3.36.

Ki(x,y,2z) = ag + a;x + a,y + a3z + a,xy + asxz + agyz + a;xyz  (3.36)
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where x , ¥y and z denote the local normalized coordinate of the region as shown in
Fig.3.17, , a,, -, a; denote the polynomial coefficient matrices, the numerical values

of the these coefficient matrices
Normalized a

AZ

» V Normalized p,

Normalized L)go
Figure 3.17: the local coordinates of region R; .

depend on the gains associated with the corners of the region.

Each corner gain is assumed to satisfy the given interpolation polynomial; thus the

following assumptions were made:

K;(0,0,0) = K,
K:(1,0,0) = K,
K;(0,1,0) = K;
K;(1,1,0) = K,
K:(0,0,1) = Kj
K:(1,0,1) = K,
K:(0,1,1) = K,
K;(1,1,1) = Kg

(3.37)

therefore, the coefficients of this polynomial can be calculated from Eq. (3.36) and

Eq.(3.37) to get

ao = K1

a1 == KZ _KZ

a, = Kz — K,

Rk, (3.38)

a4 == K4 - K3 - K2+K1
ag = K6 — K5—K2 + Kl
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ag=K;,— K- K3+ K,
a, =K8—K7—K6+K5—K4_+K3+K2—K1

Substituting Eq. (3.38) into Eq. (3.36) gives

K=K (1-x—y—z+xy+xz+yz—xyz)+ Ky(x—xy—
xz +xyz) + K3(y — xy —yz + xyz) + K,(xy — xyz) + (3.39)
Ks(z—xz—yz+xyz) + K¢(xz — xyz) + K;(yz — xyz) + Kgxyz

Similarly, the corresponding value of the extended observer gain matrix can be
expressed as

Lo=L,(1-x—-y—z+xy+xz+yz—xyz)
+ Le,(x —xy —xz + xyz) + Loy (y — xy — yz + xy2)
+ Le,(xy —xyz) + Lo (z — xz — yz + xyz)
+ Lo (xz — xyz) + Lo, (yz — xyz) + Logxyz

(3.40)

This includes that the gains can be updated continuously according to the local x- , y-
and z-coordinates of the current operating point. The distribution of the dominant
eigenvalues corresponding to R; (i.e., Xe[1;0] , ye[1;0], z€[1;0]) are shown in figure
3.18. Note that the regions of the dominant eigenvalues are considerably contracted.
Therefore, the relative stability and the damping property are preserved for all

operating points inside the region.
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Figure 3.18 : The plotting of (4,, 4;, 43) for Ry, after the updating of gains for
each operating point.
Another significant advantage acquired using this interpolation method is that, the
problem which may appear due to a stepwise change of the controller gain between

two different regions is avoided.

3.7 Simulation results

Simulation results for different operating conditions, based on the developed
continuous gain method, are shown in Figs. (3.19-3.26). In Figs. (3.19-3.22) the
payload is subjected to the initial condition 8 = 1 = pi/5 rad with different operating
conditions in terms of the luff p,, slew «, angles and payload cable length L,,. Here
the crane is allowed to vibrate for the first Sseconds, and then the controller is turned
ON at t=5 seconds to check the operation of the controller and its ability to suppress

the vibrations of the crane. The simulation was conducted with the following
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assumptions of the crane geometry, the payload mass m,, = 100kg the elastic boom

length L; = 5mand the circular cross section of the elastic boom has outer diameter

D, = .12m and inner diameter D; = .1m.

In Fig. 3.23 the ship is subjected to sinusoidal rolling disturbance A§ with a variable
frequency. The response for a sinusoidal rolling close to the average value of the first
eigenfrequency of the crane and payload is given in Fig. 3.23. And the effect of a
nonzero initial condition in addition to the rolling disturbance is shown in Fig. 3.25. In
all cases the observer has no knowledge about the initial condition of the crane. i.e.,
the initial condition of the observer is set to be zero. In Fig. 3.26, a nonzero
disturbance force acting directly on the payload is included. For all of the above
mentioned cases, it can be recognized that the controller performs very well and the
oscillations are reduced significantly without any noticeable abnormal secondary effect

or chattering in the response due to changing the operating region of the crane.
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Also, the control system is simulated for a chaotic rolling disturbance . Here the
chaotic rolling motion is generated with frequency close to the first eigenvalue of the
system using the Chua’s equations set which is one of the popular tools for producing

such signal. A general dimensionless state equation for a Chua’s Oscillator is given as
[7,19]

G =ka(h -4 - £(9)

G =K(S — % + ) (3.41)
% =k(—0% — %)

with
f(9>=b91+%<a—b>{|a+1|-|L91-1|}, (3.42)

where «, o, 7, a, b, and Kk are constant parameters. For the selection: o = 15.6, o =
28.58, y=10, a=—1.14286, b = -0.714286, k = 1, with the initial conditions % (0) =
1.16346, %(0) =-0.4972335, and $%(0) = —0.905656, the solution of Chua’s equations
for 4(1) is chaotic. Therefore, the rolling excitation is chosen as

AS(t) =mY(t), (3.43)

where m is constant; it’s value determines the amplitude of the chaotic rolling. The
numerical solution of the above three equations is displayed in Fig. 3.27 bellow.

AS

| | | |
10 20 30 40 50 60 70 80 90 100

25 | | | | |
0

Time[sec]
Figure 3.27: Chaotic rolling displacement.

The responses due to chaotic rolling excitation of the ship are shown in Fig. 3.28, it
can be recognized that the measured oscillations can increase significantly if no control
is used, and they are well suppressed when the controller is used. In Fig. 3.29 the crane
is subjected to rolling disturbance with frequency closed to first eigenvalue frequency
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of the system but in this time the payload mass was changed to 50 kg , it can be seen
that that the controller performs very well despite the payload mass was reduced .
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4 Summary, conclusions, and recommendations

4.1 Summary and conclusions

The full nonlinear mathematical model of an elastic ship-mounted crane is derived.
The obtained model describes the coupled dynamics of the elastic boom and the
payload. Taylor series expansion method is utilized to expand the model about the
current operating point, which varies with the length of the payload cable, the luff
and the slew angles of the boom. The linear model is considered to design the variable

gain model-based controller.

Since the model is linearized about the current operating point which is dependent on
the operator commands (the cable length, the boom operate luff and slew angles), the
dynamic of the crane is described using a multi model approach; each model is valid
only for a specified operating point and therefore for a defined region in the

neighborhood of the operating point.

The state space model was derived to the linear mathematical model, the simulation
shows that, when the disturbances affecting the crane is close to any of the eigenvalue
of the crane system, resonance occurs and the vibrations will grow up without limit.
Also the state space model was tested under the effect of different initial conditions of

the system.

Observability and controllability are guaranteed using four measurements and three
control inputs. The states in addition to the disturbance force acting on the payload are
reconstructed by designing an extended observer. An optimal state feedback controller
was designed based on the states reconstructed by the extended observer; its duty is to
create the necessary damping to suppress the vibrations due to disturbances and
nonzero initial conditions acting on the payload, it is also responsible to suppress the

vibrations caused by operator commands (hoisting and lowering the payload).
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A variable gain observer and a variable-gain controller are designed to control the
crane which represented by a multi-model problem; the numerical values of the gains
are updated in real time according to (a) the current operating region, which is
determined by the region finder, and (b) the location of the current operating point
inside the current region. Each operating region has eight corners, and each corner has
its own observer and controller gain set. The actual controller and observer gains at
any point inside the region are calculated using 3D interpolation polynomial; this
ensures a smooth operation of the controller and preserves the stability and
performance robustness as demonstrated using the plotting of the distribution of the
dominant eigenvalues of the controlled system . In addition, transition of the controller
between different operating regions (leaving a certain operating region and entering a
new region) takes place gradually and in a smooth manner because any two successive
regions have a common edge of four common nodes. This guaranteed that no stepwise
change in the gains occurred and therefore chattering in the response is avoided.
Simulation results showed that the payload cable length and the luff angle have the
dominant effect in determining the size of each region but the slew angle has very

small effect.

Consequently, this work can be considered as a background for a new construction of
ship mounted cranes of elastic booms which can carry out the cargo transfer faster than
rigid boom cranes with less power consumption. This distinguishes the proposed
crane design from the previous cranes which have rigid booms . Another important
advantage which should be added here is that, the proposed crane can operate safely in
the worst case scenario of sea motion excitations at the resonance frequencies. This is

due to the controllability capability obtained by using the three inputs together.

68



4.2 Recommendations

For further studies and future works, we recommend the following:

1.
2.

Include the dynamics of the actuator in the model

Design a filter in the input side to contribute in damping out the oscillations
coming from the operator command inputs.

Conducts experiments to validate the controller operation.

Extend the controller to include a tracking loop to guarantee smooth tracking

of the operator command.
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Appendix A
Matlab code

The main program.

clear all
format long

ro=8000;

syms w2 v2 gama2 phi2 w3 v3 gama3 phi3 w4 v4 gamad4 phi4
syms w5 v5 gama5 phi5 w6 v6 gama6 phi6 theta opsi

1=1; %length of one element of the
elastic boom in(m)

mp=100 ; %weight of the payload in (kg)
row0=45*pi/180; % luff angle in (degrees)

L2 =4 ; %length of the payload cable
in (m)

alphO= 20*pi/180;
elastic boom (degrees)
Ee=207*10"9 ;
(pascal)
Do=0.12;
the elastic boom in(m)
Di=0.1;
1=(1/764)* pi*(Do™N4-Di™Nd);
(m"4)
vol=(pi/4)*(Do"2-Di"2)*1;
me= ro*vol;
Py=5;Px=5;Pz=5;
0=9.81;
L1=5*1;

%outplanar motion of the
% modulus of elasticity in

% radius of the cross section of

%l:-moment of inertia

%wind step forces in (N)
%gravity acceleration in (m/s”™2)
% total length of the elastic

boom in (m)

%%%%%6%%%6%%%%%6%%%%%6%% %% %6%% 6% % %% %6%% %% %% % 6% % %% %6%% %% %% % 6% % %% %6% % %% % %% 6% % %% %% % %% %
%%%%%%%%6%%%%

%---Total mass matrix u=[w2; v2; gama2; phi2; w3; v3; gama3 ;phi3; w4
;vd;gamad; phi4;ws ;v5 ;gama5; phi5; w6 ;v6; gama6; phi6;theta;opsi];
mtotal = (( me*1)/7420) ...

* [312, 0, 0, 0, 54, 0, -13*I , 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0,0 ,0;
0, 312 0, 0, 0, 54, 0, -13*1, 0,
0, 0, 0, 0, 01 0’ 07 07 07 07
0,0 ,0;
0, 0, 8*1"2, 0, 13*1, 0, -3*1"2, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0,0,0;
0, 0, 0, 8*172, 0, 13*1, 0, -3*1"2, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0,0,0;
54, 0, 13*1, 0, 312, 0, 0, 0, 54,
0, -13*I, 0, 0, 0, 0, 0, 0, 0, 0,
0,0,0;
0, 54, 0, 13*1, 0, 312, 0, 0, 0,
54, 0, -13*1, 0, 0, 0, 0, 0, 0, 0,
0,0,0;
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-13*1, 0, -3*1"2, 0, 0, 0, 8*1"2, 0, 13*1,

0, -3*172, 0, 0, 0, 0, 0, 0, 0, 0,
0,0,0;

0, -13*1, 0, -3*172, 0, 0, 0, 8*1"2, 0,
13*1, 0, -3*172, 0, 0, 0, 0, 0, 0,
0, 0,0,0;

0, 0, 0, 0, 54, 0, 13*1, 0, 312,
0, 0, 0, 54, 0, -13*1, 0, 0, 0, 0,
0,0,0;

0, o0, o0, 0, 0, 54, 0, 13*1, 0,
312, o0, o0, 0, 54, 0, -13*1, 0, 0,
0, 0,0,0;

0, 0, 0, 0, -13*1, 0, -3*1"2, 0, 0,
0, 8*172, 0, 13*1, 0, -3*172, 0, 0, 0, 0,
0,0,0;

0, o0, o0, 0, 0, -13*1, 0, -3*1"2, 0,
0, 0, 8*172, 0, 13*1, 0, -3*172, 0, 0, 0,
0,0,0;

0, 0, 0, 0, 0, 0, 0, 0, 54,
0, 13*1, o0, 312, o0, 0, 0, 54, 0, -13*1,
0,0,0;

0, 0, 0, 0, 0, o, o, o, o,
54, 0, 13*1, 0, 312, 0, 0, 0, 54, 0,
-13*1,0,0;

0, 0, 0, 0, 0, 0, 0, 0, -13*1,
0, -3*172, 0, o0, 0, 8*172, 0, 13*1, 0, -3*1"2,
0,0,0;

0, 0, 0, 0, 0, 0, 0, 0, 0, -
13*1, 0, -3*172, 0, 0, 0, 8*172, 0, 13*1,
0, -3*172,0,0;

o0, o, o0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 54, 0, 13*1, 0, 156+ (840*mp
*cos(row0)*cos(row0)/(me*1°2)) , 0, -22*1, 0,0, O;

0, 0, 0, 0, 0, 0, 0, 0, 0,
0, o0, 0, 0, 54, 0, 13*1, 0, 156 ,
0, -22*1,0,0;

0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, -13*1, 0, -3*172, 0, -22*1, 0, 4*1"2,
0,0,0;

o0, 0, o0, 0, 0, 0, 0, 0, 0,
o0, o0, o0, 0, -13*1, 0, -3*172, 0, -22*1, 0,
4*172,0,0;

0 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,0,0, -

420*mp*L2 *sin(alph0)*sin(row0)/(me*1)), ( 420*mp*L2
*cos(alph0)/(me*1)), 0, 0, ( 420*mp*L272/(me*1)), 0;

o,o0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, ( -420*mp*L2
*cos(alph0)*sin(row0)/(me*1)), ( -420*mp*L2 *sin(alph0)/(me*1)), 0, O,
0, (420*mp*L272/(me*1)) 1:%
%%%9%6%6%%%6%6%%%6%6%%%6%6%%%6%6%%%6%6%%%6%6%% Y6%6% % Y6%6% % Y6%6% % Y6%6% % Y6%6% % Y6%6% % Y6%6% % Y6%6% % Y6%6% % Y%6%6% % %% % %%
96%%%%%%%%%%%%%%%%%%%%6%%%%%%6%% %% % %% % %% % %% % %% % %% % %% % %% % %% % %% % %% % %% % %% % %% % %% %%
%6%%6%6%%%6%6%%%6%6%%%6%6%%%6%6%%%6%6%%%6%6%% %6 %6%% %6 %6%% %6 %% % % %% %% %% % % %% % % %% %% %% %% %% % % %%
%----Total stifiness matrix u=[w2; v2; gama2; phi2; w3; v3; gama3 ;phi3; w4
;v4; gamad; phi4;w5 ;v5 ;gama5; phi5; w6 ;v6; gama6; phi6;theta;opsi];
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ktotal =(Ee*1/1"3)*[ 24, 0, 0, o, -12, 0, 6*I,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0,0,0;
0, 24, 0, 0, 0, -12, 0, 6*1, 0, o,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0,0;
o, 0, 8*172, 0, -6*I1, 0, 2*172, 0, 0, 0,
o, o, o, 0 0, o, o, 0 o, 0,0,0;
o, o, 0, 8*I™2 0, -6*1, 0, 2*1I72 o, o,
0, 0, 0] 0, 0, 0, 0, 0, o, 0,0,0;
-12, 0, -6*1 0, 24, 0, o, 0, -12, 0
6*1, o, o, o, o, o, 0, 0, 0, 0,0,0;
o, -12, 0, -6*I1, o, 24, 0, 0, 0, -12,

o, 6*1, o, o, o, o, o, o, o, 0,0,0;
6*1, 0, 2*172, 0, 0, 0, 8*172, 0, -6*I, o,
2*1n2, 0, 0, 0, 0, 0, 0, 0, o, 0,0,0;

o, 6*1, 0, 2*172, 0, o, 0, 8*1"2, 0, -6*I,
0, 2*172, o, o, 0, o, o, o, o, 0,0,0;
o, o, o, o, -12, 0, -6*1, o, 24, o,
0, 0, -12, 0, 6*1, 0, 0, 0, o, 0,0,0;
0, 0, 0, 0, 0, -12, 0, -6*I1 o, 24,
o, o, o, -12, o, 6*1, 0 o, 0, 0,0,0;
o, o, o, o, 6*1, 0, 2*172 0, 0, o,
8*1"2 0 -6*1 0, 2*I™2 o, o, 0 o, 0,0,0;
0 0, 0] 0, 0 6*1, 0, 2*1"2 0, o,
0, 8*1™2 0, -6*1 0, 2*172 0, 0, 0, 0,0,0;
o, o, o, o, o, o, 0, 0, -12, 0, -
6*1, o, 24, o, o, o, -12, o, 6*1, 0,0,0;
o, o, o, o, o, o, o, o, o, -12,
0, -6*1, 0, 24, 0, 0, 0, -12, 0, 6*1,0,0;
0, 0, 0, 0, 0, 0, o, 0, 6*1, o,
2*1n2, o, 0, 0, 8*172, 0, -6*1, 0, 2*1"2, 0,0,0;
o, o, o, o, o, o, o, o, o, 6*1,
0, 2*172, o, o, 0, 8*1™2, 0, -6*1, 0, 2*172,0,0;
0, 0, 0, 0, 0, 0, 0, 0, 0, o,
0, 0, -12, 0, -6*1, 0, 12, 0, -6*I, 0, (

20*I"2*(Pz*cos(row0)+mp™* g*S|n(row0)*S|n(alph0)—
Py*sin(row0)*sin(alph0)))/(Ee*l), (
20* 172> (Px*cos(row0)+mp*g*sin(row0)*cos(alph0)-
Py*sin(row0)*cos(alph0)))/(Ee*l) ;

0, o, 0, o0, 0 0, 0, 0, 0, 0,
0, 0, 0, -12, 0, -6*I1, o0, 12, 0, -6*1,(
20%17M2*( -mp g*cos(alph0)+Py*cos(aIphO)))/(Ee*I) ( 20*1M2*(
mp*g*sin(alph0)-Py*sin(alph0)))/(Ee*1);

0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 6*1, 0, 2*172, 0, -6*1, 0, 4*1"2, 0,0,0;

o, o, o, o, o, o, 0, 0, 0, 0,
o, o, o, 6*1, 0, 2*172, 0, -6*1, 0, 4*172,0,0

o0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, (IA3*(mp g*L2-Py*L2))/(Ee*Il),
0

o,o0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, (A"3*(mp*g*L2-
Py*L2))/(Ee*1) ];
%%9%6%6%%%6%6%%%6%6%%%6%6%%%6%6%%%6%6%%%6%6%% Y6%6% % Y6%6% % Y6%6% % Y6%6% % Y6%6% % Y6%6% % Y6%6% % Y6%6% % 6% % Y%6%6% % %% %% %
%%%9%6%6%%%6%6%%%6%6%%%6%6%%%6%6%%%6%6%%%6%6%% Y6%6% % Y6%6% % Y6%6% % Y6%6% % Y6%6% % %% % Y6%6% % Y6%6% % %6%6% % %% % Y% %% % %
9%9%9%6%6%%%6%6%%%6%6%%%6%6%%%6%6%%%6%6%%%6%6%% %6%6% % Y6%6% % Y6%6% % Y6%6% % Y6%6% % %% % Y6%6% % Y6%6% % %% % %% % Y%6%6% % %
%%%%6%6%%%6%6%%%6%6%%%6%6%%%6%6%%%6%6%%%6%6% % %6%6% % %6%6% % %6%6% % Y6%6% % %6%% % %6%6% % %%% % %6%6% % %% %% %% %% %% %% %
%%%%6%
Yom—mm disturbunce displacement[x0A;y0A;zOA;dleta]
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Bl distu sp=(-1/20)*[0,0,0,-20*me*g*sin(row0) ;

|
oOooQ

0*me*g*sin(row0) ;

eNeoNe]

O0*me*g*sin(row0) ;

el eNe)
M wrw N v v N wr v NDvr v v

O0*me*g*sin(row0) ;

-20/D)*(Py*sin(row0-mp*g*sin(row0)));

eNeoloolololoNololololoNoNololoNoNoNoNal |

eNoloololoNolololololoNoNololoNoNoNoNal, |

eNeoloolololoNololololooNololoNoloNoNal, |

[eNoNoNeol YoloNe]

0,0,0,0];:;%(-20/1)*(-Py*sin(rowO+mp*g*sin(row0)))
%%9%6%6%%%6%6%%%6%6%%%6%6%%%6%6%%%6%6%%%6%6%% Y6%6% % Y6%6% % Y6%6% % Y6%6% % Y6%6% % Y6%6% % Y6%6% % Y6%6% % 6% % Y%6%6% % %% % %%
96%%%%%6%%%%%%%%%%%%%%%%%% %% %%%% %% %% %% %%
Yom————————— Acceleration of disturbances [x0A;y0A;zOA;dleta]
B2distur_acce =(-1720)*[ -20*me*cos(alph0)*sin(row0), 20*me*cos(row0Q), -
20*me*sin(alph0)*cos(row0),20*1*me;
-20*me*sin(row0),0,20*me*cos(alph0),0;
0,0,0,(4*me*1"2)/3;
0,0,0,0;
-20*me*cos(alph0)*sin(row0), 20*me*cos(row0),-
20*me*sin(alph0)*cos(row0) ,40*1*me; . ..
-20*me*sin(row0),0,20*me*cos(alph0),0;
0,0,0,(4*me*1"2)/3;
0,0,0,0;
-20*me*cos(alph0)*sin(row0), 20*me*cos(row0),-
20*me*sin(alph0)*cos(row0),60*1*me;
-20*me*sin(row0),0,20*me*cos(alph0),0;
0,0,0,(4*me*1"2)/3;
0,0,0,0;
-20*me*cos(alph0)*sin(row0), 20*me*cos(row0),-
20*me*sin(alph0)*cos(row0),80*1*me;
-20*me*sin(row0),0,20*me*cos(alph0),0;
0,0,0,(4*me*12)/3;
0,0,0,0;
0, (-20*mp*cos(row0))/1,0, ((-20*L1*mp*cos(row0)*cos(row0))/ D +((20*(-
25/3*1"3*g*cos(rowQ) *(7*1*me+5*mp)/Ee/ 1) *mp*sin(row0)*cos(row0))/1);
0,0,0,0;
0,0,0,0;
0,0,0,0;
0,0, (20*L2*mp)/1, (20*L2*mp*((-L1*sin(alph0)*sin(row0))-((-
25/3*1"3*g*cos(row0)*(7*1*me+5*mp)/Ee/1)*sin(alph0)*cos(row0))))/1;
(20*L2*mp)/1,0,0, (20*L2*mp*((-L1*cos(alph0)*sin(row0))-((-
25/3*1"3*g*cos(row0)*(7*I*me+5*mp)/Ee/1)*cos(alph0)*cos(row0))))/1];
%%9%6%6%%%6%6%%%6%6%%%6%6%%%6%6%%%6%6%%%6%6% % %6%6% % %6%6% % Y%6%% % Y6%6% % Y%6%6% % %6%6% % %%% % %6%6% % %%% % %% %% %% %% %
%%%6%6%%%6%6%%%6%6%%%6%6%%%6%6%%%6%6%%%6%6%%%6%6% % %6%6% % %6%6% % Y%6%6% % Y%6%6% % %% %% %% %% %% %% %
Yom—mm e input dispalcement [row;alpha;L2]
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B3 _input_disp=(-1/20)*[-20*me*g*sin(row0),0,0;
0,0,0;
0,0,0;
0,0,0;
-20*me*g*sin(row0),0,0;
0,0,0;
0,0,0;
0,0,0;
-20*me*g*sin(row0),0,0;
0,0,0;
0,0,0;
0,0,0;
-20*me*g*sin(row0),0,0;
0,0,0;

)*(Py*sin(row0-mp*g*sin(row0))),0,0;

AOOO\OO

-20*Pz)/1;
(-20*P2)/1] ;%(-20/1)*(-Py*sin(rowO+mp*g*sin(row0)))

OOOOO/\OO

OOOOOI\)OO

%9%%%0%%0%%%%%%%%%%%%%6%%6%%6% %% %% %% %% %% %% %% % %% %% %% %% %% %% %% %% %% %% %% %% % %% %% %% %% %% %

0/70/410/70/40/0/40/0/40/0/40/40/0/40/0/40/20/40/+0/40/~0/40/~0/40/~0/40/A0,
07070707070707070707070707070707070707070707070707070

Yom—mmmm e Acceleration of input variables[row;alpha;L2]
B4 input_acc= (-1/20)*[20*1*me,0,0;

0,me*1*(10*cos(row0)+10),0;

(4*me*112)/3,0,0;

0, (I"2*me*(5*cos(row0)-1 ))/3,0;

40*1*me,0,0;

0,me*1*(30*cos(row0)+10),0;

(4*me*112)/3,0,0;

0, (I"2*me*(5*cos(row0)-1 ))/3,0;

60*1*me,0,0;

0,me*1*(50*cos(row0)+10),0;

(4*me*112)/3,0,0;

0, (I"2*me*(5*cos(row0)-1 ))/3,0;

80*1*me,0,0;

0,me*1*(70*cos(row0)+10),0;

(4*me*112)/3,0,0;

0, (I"2*me*(5*cos(row0)-1 ))/3,0;

((-20*L1*mp*cos(row0)*cos(row0))/1)+((20*(-
25/3*1"3*g*cos(rowQ)*(7*1*me+5*mp)/Ee/ 1) *mp*sin(row0)*cos(row0))/1),0, (-
20*mp*cos(row0))/1;

0,0,0;

0,0,0;

0,0,0;

o*L2*mp*((-L1*sin(alphO0)*sin(row0))-((-
25/3*1"3*g*cos(row0)*(7*1*me+5*mp)/Ee/1)*sin(alph0)*cos(row0))))/1, (20*L2*m
p*(( L1*cos(alph0)*cos(row0))-((-
25/3*1"3*g*cos(row0)*(7*1*me+5*mp)/Ee/1)*cos(alph0)*sin(row0))))/1,0;

20*L2*mp*((-L1*cos(alph0)*sin(row0))-((-
25/3*1"3*g*cos(row0)*(7*1*me+5*mp)/Ee/1)*cos(alphO0)*cos(row0))))/1, (20*L2*m
p*((-L1*sin(alph0)*cos(row0))-((-
25/3*1"3*g*cos(row0)*(7*1*me+5*mp)/Ee/1)*sin(alph0)*sin(row0))))/1,0];

%%%%%6%%%0%%%%%6%%%%%6%%%0%%6%% 6% % %% %% % %% % %% %6% % %% %6%% %% % %% 6% % %% %% % %% % %% 6% % %% %% % %% %
%%%%%6%%%0%%%%%6%%%%%6%% %% %% % %6%%6 %% %6%% %% %% % 6% % %% %6%% %% %% % 6% % %% %% % %% % %% 6% % %% %% % %% %
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%%%6%6%%%6%6%%%6%6%%%6%6%%%6%6%%%6%6%%%6%6% % %6%6% % %6%6% % %6%% % Y6%% % %6%6% % %6%6% % %%6% % %%6% % %%% % %% %% %% %% %
%%

Yom—mmmmmm - wind force [px;py;:pz]

B5wind=(-1/20)*[0,0,0;

,0,
,0,
.0,
.0,
.0,
,0,
,0,
.0,
.0,
.0,
,0,
,0,
.0,
.0,
,0,
,0,
.0,
.0,
.0,
-20

*cos(row0))/1,0;

A e I I

[IaYelelol \NololoNoloNolooloNoloNoNoNeNe)

-20*L2)/1;
L2)/1,0,0];

alekeloleolololoNoloololololololoNoNoNoNe]

%6%9%%%6%6%6%%%% % %6%6%6%%%% % %6%6%6%%%% % % %6%6%6% %% % % %6%6%6%% % % Y% %6%6%6%% % % % %%6%6%% %% % % %6%6%6%6% % % % %%%%
%%9%%%%6%6%%%%%
% deriving the state space model
cl=zeros(4,22);
cl(1,17)=1; %to measure w6
cl(2,18)=1; %to measure v6
cl(3,21)=1; %to measure theta
cl(4,22)=1; %to measure opsi
u=[w2; v2; gama2; phi2; w3; v3; gama3 ;phi3; w4 ;v4; gamad; phid;...
w5 ;v5 ;gama5; phi5; w6 ;v6; gama6; phi6;theta;opsi;zeros(22,1)];
A=[zeros(22,22), eye(22);-
ktotal*inv(mtotal),zeros(22,22)] ; %%%%%%%%%%%%%%%%%%%%%%%%%%
size(A);
B=[zeros(22,3); (-ktotal*inv(mtotal)*B4_ input_acc)+B3_input_disp];
size(B);
C=[c1*inv(mtotal) zeros(4,22)];
size(C);
D=[cl*inv(mtotal)*B4 input_acc];
F=[cl*inv(mtotal)*B2distur_acce];
size(F);
N=[zeros(22,3);B5wind];
E=[zeros(22,4); (-ktotal*inv(mtotal)*B2distur_acce)+Bl_distur_disp];
size(E);
% sys=ss(A,B,C,D)
v %qO0=[ (-1/3*1"3*g*cos(row0)*(13*1*me+7*mp)/Ee/1);

=

0 -
Q (—1/2*IAZ*g*cos(rOWO)*(16*I*me+9*mp)/Ee9i);
0 -
g —1/6*IA3*g*cos(row0)*(89*l*me+52*mp)/Ee/?;
Q —1/2*IA2*g*cos(row0)*(25*I*me+16*mp)/Ee/?;
0 8
g —3/2*IA3*g*cos(row0)*(19*I*me+12*mp)/Ee/E;
0 >
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% -1/2*17"2*g*cos(row0)*(29*1*me+21*mp)/Ee/1;

% o
% -2/3*1"3*g*cos(row0)*(65*1*me+44*mp)/Ee/1;
% 0
% -3*1"2*g*cos(row0)*(6*1*me+4*mp)/Ee/ | ;
% o
% -25/3*1"3*g*cos(row0)*(7*1*me+5*mp)/Ee/ | ;
% o
% -5/2*1"2*g*cos(row0)*(6*1*me+5*mp)/Ee/ 1 ;
% 0:
% 0;
% pi/4];

q0 =[0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0; 0;0;0;0;pi/5;pi/5];
gdotO=zeros(22,1);
% Q=[-inv(mtotal)*ktotal];
z0=[mtotal zeros(22,22);zeros(22,22) mtotal]*[q0; qdotO]-[B4_input_acc
zeros(22,3);zeros(22,3) B4 _input_acc]*[0 ;0;0;0;0;0]--.-
-[B2distur_acce zeros(22,4);zeros(22,4)

B2distur_acce]*[0;0;0;0;0;0;0;0];
%s=C*z0%[mtotal zeros(22,22);zeros(22,22) mtotal]
%CO=[inv(mtotal) O*mtotal];
%6%%%%%6%6%6%%%% % %%6%6%%%% % %6%6%6%%% %% % %6%6%6% %% % % %6%6%6%% % % % %6%6%6%% % % % %%6%6%% %% % % %6%6%6%% % % % %%%%
%%9%%%%6%6%6%%%%% % %6%6%%%%% % %%6%6%%
%6%9%%%6%6%6%%%%%%6%6%6%%% %% %%6%6%%% %% % %6%6%% %% % % %6%6%% %% % % %6%6%6%% %% % %%6%6%% %% % % %6%6%% %% % % %%%%
%6%9%%%6%6%%%%%%%%%6%%%% % % %6%%%

%cheking controllability by using transformation method

%[P,J]=jordan(A);

%B_slash=inv(P)*B
%6%9%%%6%6%%%%%%%%6%6%%% %% %%6%6%%% %% % %6%6%% %% % % %6%6%% %% % % %6%6%6%% %% % %%6%6%% %% % % %6%6%% %% % % %%%%
%6%9%%%%6%6%6%%%%% % %6%6%6%%%% % % %6%6%%

size(B);

Q=.00001*eye(44,44);
Q(17,17)=.0001;
Q(18,18)= .00001;
Q(21,21)=.00001;
0(22,22)= 0001 ;

R=1000*eye(3,3);
R(1,1)=500 ;
R(2,2)= 500 ;

R(3,3)= 500 ;

Kf=1qr(A,B,Q,R);

Kfsize=size(KF);

Af=A-(B*KF);

eigaf=eig(Af);

Cf=C-(D*KF);

Mj=eye(47,44);

file="KfattwodimRl.mat";

KFfO=KT;

save(file, "KTf0");

load "KfattwodimR1l.mat";

AF=A-(B*KFO );

eigcontroller= sort((eig(Af)), "descend”)
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% Design observer

Ae=[A N;zeros(3,47)];
sizeAe=size(Ae);
Be=[B;zeros(3,3)];
sizeBe=size(Be);
Ee=[E;zeros(3,4)];
sizeEe=size(Ee);
Ce=[C zeros(4,3)]1;
sizeCe=size(Ce);
Qe=10000*eye(47);
Qe(45,45)=1el5;
Qe(46,46)=1el5;
Qe(47,47)=1el5;
Re=_.0001*eye(4,4);
le=lqr(Ae",Ce",Qe,Re);
Le=le";
sizelLe=size(Le);
eigA=eig(A);
He=zeros(47,3);
He(45,1)=1;He(46,2)=1;He(47,3)=1;

file="LeatowdimR1l.mat";
LeO=Le;
save(file,"Le0");
load "LeatowdimRl.mat”;
eigobserver=sort(eig(Ae-Le0*Ce), "descend™);

for i=1l:size(eigcontroller)
if eigobserver(i,l) < eigcontroller (i,l)
x(1,1)=1;
else
x(1,1)=0;
end
end
X

Matlab code to calculate the zero operating point

syms me beta g E I 1 mp

syms w2 v2 gama2 phi2 w3 v3 gama3 phi3 w4 v4 gama4 phi4
syms w5 v5 gama5 phi5 w6 v6 gama6 phi6

FO=(-

1/20)*[20*me*g*cos(beta) ;0;0;0;20*me*g*cos(beta);0;0;0;20*me*g*cos(beta); - .

0;0;0;20*me*g*cos(beta);0;0;0; (20/D)*mp*g*cos(beta) ;...

0;0;0];
ktotalinvers=(E*1/1"3)*[ 24, 0, 0, 0, -12, 0, 6*I,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0;

0, 24, 0, 0, 0, -12, 0, 6*I, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 0, 8*12, 0, -6*I, 0, 2*172, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0;

0, 0, 0, 8*1"2, 0, -6*I, 0, 2*1"2, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
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-12, 0, -6*I, 0, 24, 0, 0, 0, -12, 0,

6*1, o, o, 0, o, o, 0, o, 0, 0;

o, -12, 0, -6*I1, 0, 24, o, 0, 0, -12,
o, 6*1, o, o, o, o, o, o, o, 0;

6*1, 0, 2*172, 0, 0, 0, 8*172, 0, -6*I, o,

2*1n2, 0, 0, 0, 0, 0, 0, 0, o, 0;

o, 6*1, 0, 2*172, o, o, 0, 8*172, 0, -6*I,
0, 2*172, o, o, 0, o, o, o, o, 0;

o, o, o, o, -12, 0, -6*1, o, 24, o,
0, 0, -12, 0, 6*1, 0, 0, 0, o, 0;

0, 0, 0, 0, 0, -12, 0, -6*1, 0, 24,
o, o, o, -12, 0, 6*1, o, o, 0, 0;

o, o, o, o, 6*1, 0, 2*172, 0, 0, o,
8*172, 0 -6*1, 0, 2*172, o, o, o, o, 0

0, 0, 0, 0, 0, 6*1, 0, 2*172, 0, o,
0, 8*172, 0, -6*1, 0, 2*172, 0, 0, o, 0;

o, o, 0, o, 0, o, o, 0, -12, 0, -
6*1, o, 24, 0, o, o, -12, o, 6*1, 0;

o, o, o, o, o, o, o, o, o, -12,
0, -6*1, 0, 24, 0, 0, 0, -12, o, 6*1;

0, 0, 0, 0, 0, 0, 0, 0, 6*1, o,
2*1n2, o, o, 0, 8*172, 0, -6*1, 0, 2*1"2, 0;

o, o, o, o, o, o, o, 0, 0, 6*1,
0, 2*172, o, o, 0, 8*172, 0, -6*1, 0, 2*172;

0, 0, 0, 0, 0, 0, 0, 0, 0, o,
0, 0, -12, 0, -6*1, 0, 12, 0, -6*1, 0;

o, o, o, o, o, o, o, 0, 0, 0,
o, o, o, -12, 0, -6*I1, o, 12, 0, -6*I;

o, o, o, o, o, o, o, o, o, o,
0, 0, 6*1, 0, 2*172, 0, -6*1, 0, 4*172, 0;

0, 0, 0, 0, 0, 0, 0, 0, 0, o,
0 o, o, 6*1, 0, 2*172, 0, -6*I1, 0, 4*1"2];

vOO=inv(ktotalinvers )*FO;

vO=simple(v00 )%/ ((E*1)/(1"3)))

u=[w2; v2; gama2; phi2; w3; v3; gama3 ;phi3; w4 ;v4; gamad; phid;...
w5 ;v5 ;gama5; phi5; w6 ;v6; gama6; phi6];

ktotal _andu=simple(ktotalinvers*v0)

Matlab code to calculate the tension and the position of the tip of the crane by axis

transformation method

%find x6 y6 z6 of point B and the tension T

syms alpha beta w6 v6 L1

Rx1 O=[cos(alpha) 0 -sin(alpha);0 1 0;sin(alpha) 0 cos(alpha)];
Rx2_xl1l=[cos(beta) -sin(beta) 0;sin(beta) cos(beta) 0;0 0 1];
Rx2_0=Rx1_0*Rx2_x1
position_ofB=[L1;w6;v6];%relative to x2y2z2 plane
posit_B= (Rx1_0*Rx2_x1)*position_ofB %relative to x0y0z0

syms th ops T

Tx=T*cos(th)*sin(ops);
Ty=-T*cos(th)*cos(ops);
Tz=T*sin(th);
transkhRx2_0O=[cos(alpha)*cos(beta), sin(beta),sin(alpha)*cos(beta);...

-cos(alpha)*sin(beta), cos(beta),-

sin(alpha)*sin(beta);. ..
-sin(alpha), 0 , cos(alpha)];
tension=transRx2_0 *[Tx;Ty;Tz] %relative to x2y2z2
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Appendix B: Simulation Diagram
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Appendix C: Derivation of the payload equation of
motion using Lagrange.

The physical coordinates for the payload are (Xp, Yp, Zp), the independent generalized

coordinates which describe the full motion of the payload are the length of the hoisting
cable L,, the in-plane angle 6 and the out-of-plane angle ¢.

The physical coordinates can be written as a function of the generalized coordinates as

follows:

Xp = Xp(L, 6,9)
YP = YP(LZJ 9! ltb) Cl
Zp =Yp(Ly, 60,9)
We can derive the virtual displacement(the change of the physical coordinates while

the time is held constant) in the direction of the physical coordinates with respect to

generalized coordinates using the following definition of the virtual displacement :

m

5 z ar; 5 -
Ty = ~0q;
=94,
where:
&r;: 1s the virtual displacement of the physical coordinates (i = 1,2, ... ... ,N), where N

1s the number of physical coordinates .
q;: 1s the generalized coordinates j = 1,2, ... ... ... ,m, where m 1s number of
generalized coordinates.

8q;: the virtual displacement of the generalized coordinates.

As follows:
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5Xp = aXP6L +aXP59+aXP5

P oL, 7% 06 dgp v

5Y, = aYPSL +6YP59+6YP5 C3
P= oL, " 96 A v

57, = aZ"aL +aZP59+aZP5

P= oL, ™% 06 A v

Also we can write the applied wind forces (Fx, Fy,FZ) in the direction of the physical
coordinates in terms of the generalized coordinates (L,, 8,1), by using the principle of
the virtual work which states that: the work performed by the applied forces through
infinitesimal virtual displacement compatible with the system coordinates is zero in
mathematical notation,

ow = IiV=1 Fi .67'1':0 C4

By using Eq. C4 the virtual work performed by the applied wind forces will be given

as:

Sw = F,.6Xp +F,.8Yp + F,.6Zp = 0 C5

Substitute Eq.C3 into Eq.C5

Sw = (F aX”+F aYP+F 0Zp >6L +
@ = "L, T e, T e e, )0

0Xp dYp dZp 0Xp adYp dZp _

(F.Z2+F 224 R 22 )50+(Fx.—a(p +F G2+ F, 22 YR

C6

Then the virtual work done in the direction of the virtual generalized coordinate 5L, is:

) P20, 2 e 2 Vs, =0 C7
Ol *aL, Y aL, = dL, 2
and in the direction of generalized coordinate 66 is:
8 P ALY TR PP, C8
50 *9L, Y oL, oL,
and in the direction of generalized coordinate §¢ is:
5 po g e 22 Vs 0 C9
Wsy = — . . =
o *9L, Y 9L, oL, v
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But the virtual work can be written in terms of generalized forces as:

m
ow = Z Q, éq " C10
k=1
where:
Qg: the generalized forces k = 1,2, ... ....., m, where m the number of generalized coordinates.

4 qy: the virtual displacement of the generalized coordinates.

Then we can conclude from Eq. C7, Eq. C8 and Eq.C9 that the generalized forces Qin the

direction of the generalized coordinates (L,,0,%) can be expressed as follows

respectively:
X aY 0z
QLZ = <Fx.a—LZ+Fy.a—LI;+FZ.a—LZ ) Cll
X, aY 9z, C12
Qo = <Fx.a—Lz+Fy.a—Lz+FZ.a—Lz>
90X, aY 3z, C13
Q<p= <Fx.a—LZ+Fy.a—LZ+FZ.a—Lz>

Now by applying the Lagrange for neoconservative forces which can be expressed as:

= Qg Cl4

d (OL) oL
dqx

dt \ag),

Then the equations of motion of the payload are represented by equations 2.13, 2.14
and 2.15.
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